A Formal Security Analysis of the Signal Messaging Protocol
Extended Version, November 2017"

Katriel Cohn-Gordon*, Cas Cremers*, Benjamin DowlingT, Luke Garratt*, Douglas Stebilat
katriel.cohn-gordon@cs.ox.ac.uk
*University of Oxford, UK cas.cremers@cs.ox.ac.uk
luke.garratt@cs.ox.ac.uk
TRoyal Holloway, University of London, UK benjamin.dowling@rhul.ac.uk
McMaster University, Canada stebilad@mcmaster.ca

Abstract

Signal is a new security protocol and accompanying app that provides end-to-end encryption for
instant messaging. The core protocol has recently been adopted by WhatsApp, Facebook Messenger, and
Google Allo among many others; the first two of these have at least 1 billion active users. Signal includes
several uncommon security properties (such as “future secrecy” or ‘“post-compromise security’’), enabled
by a novel technique called ratcheting in which session keys are updated with every message sent. Despite
its importance and novelty, there has been little to no academic analysis of the Signal protocol.

We conduct the first security analysis of Signal’s Key Agreement and Double Ratchet as a multi-stage
key exchange protocol. We extract from the implementation a formal description of the abstract protocol,
and define a security model which can capture the “ratcheting” key update structure. We then prove
the security of Signal’s core in our model, demonstrating several standard security properties. We have
found no major flaws in the design, and hope that our presentation and results can serve as a starting
point for other analyses of this widely adopted protocol.

1. Introduction

Revelations about mass surveillance of communications have made consumers more privacy-aware. In
response, scientists and developers have proposed techniques which can provide security for end users even if
they do not fully trust the service providers. For example, the popular messaging service WhatsApp was unable
to comply with Brazilian government demands for users’ plaintext messages [[15] because of its end-to-end
encryption.

Early instant messaging systems did not provide much security. While some systems did encrypt traffic
between the user and the service provider, the service provider retained the ability to read the plaintext of users’
messages. Off-the-Record Messaging [16, 29]] was one of the first security protocols for instant messaging:
acting as a plugin to a variety of instant messaging applications, users could authenticate each other using public
keys or a shared secret passphrase, and obtain end-to-end confidentiality and integrity. One novel feature of
OTR was its fine-grained key freshness: along with each message round trip, users established a fresh ephemeral
Diffie-Hellman (DH) shared secret. Since it was not possible to work backward from a later state to an earlier
state and decrypt past messages, this technique became known as ratcheting; in particular, asymmetric ratcheting
since it involves asymmetric (public key) cryptography. OTR saw relatively limited adoption, but its ratcheting
technique can be seen in modern security protocols.

Perhaps the first secure instant message protocol to achieve widespread adoption was Apple’s iMessage,
a proprietary protocol that provides end-to-end encryption. A notable characteristic of iMessage is that it
automatically manages the distribution of users’ long-term keys, and in particular (as of this writing) users have
no interface for verifying friends’ keys. iMessage, unfortunately, has a variety of flaws that seriously undermine
its security [36].

The Signal Protocol. While there has been a range of activity in end-to-end encryption for instant messaging
[31} |68]], the most prominent recent development in this space has been the Signal messaging protocol, “a
ratcheting forward secrecy protocol that works in synchronous and asynchronous messaging environments”
[53 [54]]. Signal’s goals include end-to-end encryption as well as advanced security properties such as perfect
forward secrecy and “future secrecy”.

The Signal protocol, and in particular its ratcheting construction, has a relatively complex history. TextSecure
[54] was a secure messaging app and the predecessor to Signal. It contained the first definition of Signal’s
“Double Ratchet”, which effectively combines ideas from OTR’s asymmetric ratchet and a symmetric ratchet

t An overview of changes can be found in Appendix @] An extended abstract of this paper appears at IEEE EuroS&P 2017.

K.C-G. thanks Merton College and the Oxford CDT in Cyber Security for their support.

D.S. was supported in part by Australian Research Council (ARC) Discovery Project grant DP130104304, Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery grant RGPIN-2016-05146 and Discovery Accelerator Supplement RGPAS 492986-2016.

(which applies a symmetric key derivation function to create a new key, but does not incorporate fresh DH
material, similar to so-called “forward-secure” symmetric encryption [[11]]). TextSecure’s combined ratchet was
referred to as the “Axolotl Ratchet”, though the name Axolotl was used by some to refer to the entire protocol.
TextSecure was later merged with RedPhone, a secure telephony app, and was renamed Signaﬂ the name of
both the instant messaging app and the cryptographic protocol. In the rest of this paper, we will be discussing
the cryptographic protocol only.

The Signal cryptographic protocol has seen explosive uptake of encryption in personal communications: it (or
a variant) is now used by Google Allo [55], WhatsApp [[70], Facebook Messenger [32], as well as a host of
variants in “secure messaging” apps, including Silent Circle [57], Pond [51]], and (via the OMEMO extension
[67] to XMPP) Cryptocat v2 [43]], Conversations [24]], and ChatSecure [4].

Security of Signal. One might expect this widespread uptake of the Signal protocol to be accompanied by an
in-depth security analysis and examination of the design rationale, in order to: (i) understand and specify the
security assurances which Signal is intended to provide; and (ii) verify that it provides them.

Surprisingly, this is not yet the case. There currently is little documentation available on the current version
of the Signal protocol, and no in-depth security analysis, although the developers have recently started work on
some specifications for various components of the protocol. This is in stark contrast to the ongoing development
of the next version of the Transport Layer Security protocol, TLS 1.3, which explicitly involves academic
analysis in its development [14} 26} 30, [42| 46, |52].

Frosch et al. [34} [35] performed a security analysis of TextSecure v3, showing that in their model the
computation of the long-term symmetric key which seeds the ratchet is a secure one-round key exchange
protocol, and that the key derivation function and authenticated encryption scheme used in TextSecure are
secure. However, it did not cover any of the security properties of the ratcheting mechanisms.

Providing a security analysis for the Signal protocol is challenging. First, Signal employs a novel and unstudied
design, involving over ten different types of keys and a complex update process which leads to various “chains”
of related keys. It therefore does not directly fit into existing analysis models. Second, some of its claimed
properties have only recently been formalised [23].

1.1. Contributions

We provide the first in-depth formal security analysis of the cryptographic core of the Signal messaging
protocol, which is used by more than a billion users.

To achieve this, we develop a multi-stage key exchange security model with adversarial queries and freshness
conditions that capture the security properties intended by Signal. Compared to previous multi-stage key
exchange models which involve a single sequence of stages within each session, our model considers a tree
of stages to model the various “chains” in Signal. Our security model characterizes many detailed security
properties of Signal, providing the first formal definition of Signal’s security goals. Among the interesting
aspects of our model are the subtle differences between security properties of keys derived via symmetric and
asymmetric ratcheting.

We subsequently prove that the cryptographic core of Signal is secure in our model, providing the first
formal security guarantees for Signal. We give a proof sketch in Section [5] and the full proof in Section [B.3]
Our full proof is in the random oracle model, but we have also outlined the steps required for a proof in the
standard model as a delta to the original proof, using (a variant of) the PRF-ODH assumption. As our proof
is essentially a case distinction, the latter addition is not only arguably using a more plausible cryptographic
assumption, but also provides more concrete analysis of the different security guarantees depending on how a
message key is derived in the Signal Protocol.

In practice, Signal is more than just its key exchange protocol. In Section [6] we describe many other aspects
of Signal that are not covered by our analysis, which we believe are a rich opportunity for future research. We
hope our presentation of the protocol in Section [2] can serve as a starting point for understanding Signal’s core.

1.2. Additional Related Work

Symmetric ratcheting and DH updates (asymmetric ratcheting) are not the only way of updating state to
ensure forward secrecy—i.e., that compromise of current state cannot be used to decrypt past communications.
Forward-secure public key encryption [20] allows users to publish a short unchanging public key; messages are
encrypted with knowledge of a time period, and after receiving a message, a user can update their secret key to
prevent decryption of messages from earlier time periods.

Signal’s asymmetric ratcheting, which it inherits from the design of OTR [[16], have been claimed to offer
properties such as “future secrecy”. Future secrecy of protocols like Signal has been discussed in depth by

1. TextSecure vl was based on OTR; in v2 it migrated to the Axolotl Ratchet and in v3 made some changes to the cryptographic
primitives and the wire protocol. Signal is based on TextSecure v3.

Cohn-Gordon, Cremers, and Garratt [23]]. Their key observation is that Signal’s future secrecy is (informally)
specified with respect to a passive adversary, and therefore turns out to be implied by the formal notion
of forward secrecy. Instead, they observe that mechanisms such as asymmetric ratcheting can be used to
achieve a substantially stronger property against an active adversary. They formally define this property as
“post-compromise security”’, and show how this substantially raises the bar for resourceful network attackers to
attack specific sessions. Furthermore, their analysis indicates that post-compromise security may hold of Signal
depending on subtle details related to device state reset and the handling of multiple devices.

In concurrent work released after the initial version of this paper, Bellare et al. [[10] develop generic security
definitions for ratcheted key exchange in a different context, also based on a computational model with key
indistinguishability. They describe a Diffie-Hellman based protocol that is somewhat similar to the Signal
protocol in that it uses a ratcheting mechanism and updates state, and prove that it is secure in their model under
an oracle Diffie-Hellman assumption. They also show how to combine symmetric encryption schemes with
ratcheted key exchange schemes. Their model captures variations of “backward” (healing from compromise)
and forward secrecy, but their model only allows for one-way communication between Alice and Bob, so the
security notions are one-sided: if the receiver’s long-term key is compromised then all security is lost. They
also only capture the asymmetric type of ratcheting in this sense, and do not consider symmetric ratcheting.
The authors explicitly identify modelling Signal as future work.

Also concurrently and published at EuroS&P 2017, Kobeissi et al. [44] use ProVerif and Crypto Verif to
analyze a simplified variant of Signal specified in a JavaScript variant called ProScript. Note that their main focus
is present a methodology for automated verification for secure messaging protocols and their implementations.
Kobeissi et al. consider a variant of Signal (that, e.g., does not use symmetric ratcheting). They identify a
possible key compromise impersonation (KCI) attack; we discuss this further in the context of our model in our
discussion of freshness in Section f.3] From the ProScript code, they automatically extract ProVerif models
that consider a finite number of sessions without loops. The CryptoVerif models are created manually. In both
cases, the analysis involves the systematic manual exploration of several combinations of compromised keys. In
contrast, we set out to manually construct and prove the strongest possible property that holds for Signal. For
the core protocol design, this allows us to prove a stronger and more-fine grained security property.

Recently, Green and Miers [38]] suggest using puncturable encryption to achieve fine-grained forward security
with unchanging public keys: instead of deleting or ratcheting the secret key, it is possible to modify it so that
it cannot be used to decrypt a certain message. While this is an interesting approach (especially for its relative
conceptual simplicity), we focus on Signal due to its widespread adoption.

Overview. In Section [2| we give a detailed presentation of the Signal protocol. We follow this by a high-level
description of its threat model in Section [3] and a formal security model in Section 4 In Section [5| we prove
security of Signal’s core in our model. As a first analysis of a complex protocol our model has some limitations
and simplifying assumptions, discussed in detail in Section [6] We conclude in Section

2. The Core Signal Protocol

Basic setup. The Signal protocol aims to send encrypted messages from one party to another. It assumes each
party has a long-term public/private key pair, referred to as the identity key. However, since the parties might
be offline at any point in time, standard authenticated key-exchange (AKE) solutions cannot be directly applied.
For instance, using DH key-exchange to achieve perfect-forward secrecy requires both parties to contribute new
ephemeral DH keys, but the recipient may be offline at the time of sending.

Instead, Signal implements an asynchronous transmission protocol, by requiring potential recipients to
pre-send batches of ephemeral public keys, during registration or later. When the sender wishes to send a
message, she obtains keys for the recipient from an intermediate server (which only acts as a buffer), and
performs an AKE-like protocol using the long-term and ephemeral keys to compute a message encryption key.

This basic setup is then extended by making the message keys dependent on all previously performed
exchanges between the parties, using a combination of “ratcheting” mechanisms to form “chains”. New random
and secret values are also introduced into the computations at various points, influencing future message keys
computed by the communicating partners.

Motivation and Scope. The Signal protocol uses an intricate design. Our focus is to study the existing protocol:
we aim simply to report what Signal is, not why any of its design choices were made.

It is not entirely straightforward to pin down a precise definition of the intended usage and security properties
of Signal. Our descriptions in this section were aided by existing documentation but the ultimate authority was
the implementatio [53]. After the time of writing, Open Whisper Systems published high-level specifications
for X3DH [63] and the Double Ratchet [62]] which help to clarify many details, although the codebase is still

2. The tagged releases of libsignal lag behind the current codebase. The commit hash of the state of the repository as of our reading is
listed in the bibliography. Note that there are separate implementations in C, JavaScript and Java; the latter is used by Android mobile apps
and is the one we have read most carefully.

Registration. During registration, each party registers their identity
and a set of public keys, called a “pre-key bundle”, with the server.

Session setup. For Alice to establish a secure communications
channel with Bob, Alice obtains Bob’s pre-key bundle from the
server.

Alice generates an ephemeral “ratchet” public key, derives a
root key, chaining key, and message key by combining her keys
with Bob’s, and transmits her ephemeral public key alongside an
encryption of her first message.

Bob, upon receiving all this, obtains Alice’s pre-key bundle from the
server, then derives the shared secrets.

Symmetric ratchet stage. Suppose Alice was to send another
message to Bob but has not yet received any reply from him. She
uses the symmetric ratchet to derive a new message key. She also
sends Bob a fresh ephemeral ratchet public key he can use in his
reply to Alice.

Asymmetric ratchet stage. For Bob to send a message to Alice, he
generates and sends a fresh ephemeral ratchet public key, derives

| Client A | | Server S | | Client B |
RegisterPreKeyBundle
RegisterPreKeyBundle
RequestPreKeys
PreKeyBundlep

rk, ck, mk < KDF (triple-DH shared secret)
EncryptedMessage,,;., rchkeya, 0

RequestPreKeys

PreKeyBundle ,

ck’,mk’ + KDF(ck)
NextEncryptedMessage,, ., rchkey’,

ck” ,mk" < KDF(rk, DH(rchkey'y, rchkeyg))
NewEncryptedMessage,, ., rchkeyp

chaining and message keys, and encrypts his message.

When Alice replies to Bob, she completes the asymmetric ratchet
stage by generating and sending a fresh ephemeral ratchet public
key, derives chaining and message keys, and encrypts her message.

rk’,ck”',mk" < KDF(ck”, DH(rchkey’;, rchkeyp))
NewEncryptedMessage,, .., rchkey’s

Symmetric ratchet stage. Suppose Alice was to send another
message to Bob but has not yet received any reply from him. She
uses the symmetric ratchet to derive a new message key. She also
sends Bob a fresh ephemeral ratchet public key he can use in his
reply to Alice.

ek, mk"" < KDF(ck"")
NextEncryptedMessagem , rchkey’y

Figure 1: Message flow of an example Signal execution between two clients A and B via a server S. Notation and some
operations have been simplified for clarity compared to later use.

necessary to obtain a full definition and the specification does not contain detailed definitions of the security
goals.

2.1. Protocol Overview

Figure [T] shows the message flow for an example execution of the Signal protocol. The notation in Figure [I]
has been simplified for clarity compared to later protocol diagrams; some operations have also been simplified,
for example several KDF applications have been collapsed to give the general idea of the protocol.

A party using Signal first registers their long-term key, as well as medium-term keys and some cached
one-time keys with a key distribution server. Two parties communicate using Signal in long-lived exchanges
called sessions. A session begins when Alice requests Bob’s long-term, medium-term and one-time credentials
from a key distribution server (perhaps over an authenticated channel), optionally verifies them out-of-band,
and uses them in a proprietary key exchange protocol sometimes called the Signal Key Exchange, “TripleDH”
or “X3DH”.

The key exchange outputs a master secret, which in turn is used to derive two symmetric keys: a “root key”
and a “sending chain key”. As messages are sent and received these keys are frequently updated by passing
them through a key derivation function (KDF), at the same time deriving output keys which are used elsewhere
in the protocol.

When Alice wishes to encrypt a message for Bob, she advances her sending chain by one step, deriving
a replacement sending chain key as well as a message encryption key. She can derive subsequent message
encryption keys by repeating this process, advancing the sending chain once per message in order to derive
a new key. Similarly, when she receives a message from Bob she advances her receiving chain in order to
generate a decryption key.

The root chain is advanced through a separate mechanism: when the session is initialised, Alice also
generates an ephemeral DH key known as her “ratchet key”. She attaches this to her messages, authenticated
but not encrypted. When Bob replies to a message, he will send his own “ratchet public key”. Upon receiving a

ipk 4 ik, A’s long-term identity key pair

Q
’% prepk preky B’s medium-term (signed) prekey pair
g eprepkp eprekp B’s ephemeral prekey pair
=,
3 epk 4 ek, A’s ephemeral key pair

rehpk$y rchk% — A’s a™ ratchet key pair

ckSY™ITEY -yt ey in A’s ™ send chain

B kSYmTECY gt key in A’s o™ receive chain
Qé mi™TY - message key in A’s o send chain
> miEY™TERY -t message key in A’s o™ receive chain

rk% A’s a® root key

TABLE 1: Keys used in the Signal protocol. Asymmetric key pairs show public and private components.

new ratchet public key from Bob, Alice advances the root chain fwice: first with the DH shared secret obtained
using her old public key, and second with that using her new. The resulting two outputs of the chain initialise
the new receiving and sending chains respectively, and the resulting root chain key replaces the original root
chain key.

Figure] on page [9] shows an example sequence of stages that one party might go through, with the message
encryption keys derived in each stage. For the initiator (resp. responder), mk®™ ™ *¥ denotes the " symmetric
key on the 2™ sending (resp. receiving) chain, and mkSY™ ™Y the ™ symmetric key on the 2™ receiving
(resp. sending) chain. We use the notation ir and ri for sending and receiving keys from the initiator of the
session’s perspective: ir is from initiator of the session to responder, so corresponds to a sending key for the
initiator and receiving key for the responder, and vice versa for ri. The notation inherits its complexity from
the underlying protocol, but it does allow us to distinctly name each session key that is generated, and will
allow us to make note of the subtly different properties of different keys. Thus, we can separate the Signal
protocol into four phases:

Registration. (Section
At installation (and periodically afterwards), Alice registers her identity with a key distribution server and
uploads some cryptographic data.

Session setup. (Section [2.4)
Alice requests and receives cryptographic data from Bob (either from the central server or directly from
Bob himself), and uses it to setup a long-lived messaging session and establish initial symmetric encryption
keys.

Symmetric-ratchet communication. (Section [2.5)
Alice uses the current symmetric encryption keys of her messaging session for communication with Bob,
passing them through a key derivation function on every iteration. The message keys form a type of PRF
chain: a “symmetric ratchet”.

Asymmetric-ratchet updates. (Section [2.6)
Alice exchanges DH values with Bob, generating new shared secrets and uses them to begin new chains
of message keys. The exchanged DH values give rise to a sequence of shared secrets, which are input
with the current key in the “root chain” to the key derivation function to form the “asymmetric ratchet”.

Alice and Bob can run many simultaneous sessions between them, each admitting an arbitrary sequence of
stages consisting of symmetric and asymmetric ratcheting. We first explain notation and primitives below, and
then discuss each of the four phases in detail in subsequent sections. At the end, we summarize the memory
contents as used by Signal.

Table [1]is a glossary to the ten different classes of keys used in the Signal protocol, and Figure [2| shows the
key derivations. Figure [3] depicts the operations executed in all stages of the protocol in a pseudocode format.

2.2. Notation and Primitives

Groups. Let g denote the generator of a group G of prime order ¢; we write the group multiplicatively.
Sessions. We denote A’s ith session by 7.

Stages. Within a session, Signal admits a tree of various different stages (Figure [] on page [9). We adopt a
unified notation to refer to any of them. All stages are described using a term in [square brackets]; the initial

HMAC, . (0) HMAC, (1) rk'
: |
[HKDF(J;, constl)J dh —{HKDF(rki, dh, constg)J
& KA
ckit? mk s ckitl
(a) KDFn, the KDF for message chain updates. Note (b) KDF}, the KDF for root chain updates. dh is the
that new chain keys are not computed using HKDF'; DH value derived for this stage update, and the result
instead, they use only a HMAC. is a new root key as well an output chain key.

Figure 2: Key derivation functions for root and chain keys in Signal: keys flow along edges, and boxes apply their functions
to their input. The diagrams depict the two functions used to take a chain key, and output a successor chain key and an
exported key. In our analysis, we treat these functions as black boxes instead of making specific assumptions. Iterating
these functions produces Signal’s chains.

stage is always [0] and contains the key exchange. Subsequent stages occur locally at Alice and Bob, but
correspond in the sense of generating matching keys.

Alice and Bob assign different roles to the stages they complete: Alice may consider some stage s as
generating a sending key, while Bob considers his version of the same stage as generating a receiving key. To
avoid persistent case distinctions, we adopt a role-agnostic naming scheme, describing stages as “-ir” if they
are used for the initiator to send to the responder, and as “-ri” if they are used for the responder to send to the
initiator. This maintains the invariant that stages with the same name generate the same key(s).

There are two types of asymmetric updatesas part of the asymmetric ratchet; the first uses a received ratchet
key to begin a receiving chain, and the second generates a new ratchet key to begin a sending chain. At a given
party, we count the number of asymmetric updates in a variable x; thus, we can refer to the 2" update of
the first type in a session as stage [asym-ri:z], and of the second type as [asym-ir:x]. Note that the 2™ “-ri”
stage precedes the " “-ir” stage, because the first asymmetric stage is of type “-ri”.

Similarly, there are two types of symmetric updates, “-ri” and “-ir”, depending on whether the chain to
which they belong was created by a stage of type [asym-ri:z] or [asym-ir:z]. At a given party, we count the
number of symmetric updates in the 2 symmetric chain in a variable 7; thus, we can refer to the y™ update in
the o' symmetric chain as stage [sym-ri:z,y| or [sym-ir:z,y].

Signal accommodates the potential of out-of-order message delivery in the following way. For a fixed =,
all symmetric stages in which a party generates sending keys in chain x occur before the asymmetric stage
x + 1, but symmetric receiving ratchets in chain x can occur at any time after the parent node in the graph
has been established. For example, the initiator performs all stages [sym-ir:z,1], [sym-ir:z,2], ... before stage
[asym-ir:z + 1], but may delay stages [sym-ri:z,y| as much as necessary. This means that Alice can retain
any particular receiving chain for as long as she wants. Moreover, along any given chain, chain keys can be
ratcheted forward to produce message keys in such a way that message keys are independent of each other so
retaining them while waiting for late messages to arrive should not compromise other messages. This means
that along a receiving chain, Alice can produce message key for delayed message 2, while still symmetrically
ratcheting forward to decrypt received messages 3, 4, 5, etc., safe in the knowledge that retaining message key
2 while waiting for the message to arrive should not endanger other message keys along the chain. The two
key concepts of the root key producing chain keys, and the chain keys producing message keys, means that
messages can arrive in arbitrary order while Alice and Bob can continue to asymmetrically and symmetrically
ratchet forward.

Keys. Signal distinguishes between at least ten different classes of key, depicted in Table [I] so again for ease of
reading we adopt a standardised notation. Keys are written in italics and end with the letter k. For asymmetric
key pairs, the corresponding public key ends with the letters pk, and is always computed by group exponentiation
with base ¢ and the private key as the exponent: pk = ¢gX. If the identity of the agent A who generates a key is
unclear we mark this in subscript (i.e. k4), but omit this where it is clear.

Every stage derives new keys. To identify these keys uniquely, we write the index of the stage deriving a
key k in superscript; thus, 7k would be the root key derived by A in the initial stage, and mk>YEEY the
message key derived in stage [sym-ri:z,y]. Not all stages derive all keys: for example, there is no rk®™ %Y,
since root keys are not affected by symmetric updates.

The naming scheme for keys is also role-agnostic: in intended operation, keys will be equal iff they have
the same name. As with stages, agents have different intended uses for the same key: for example, the initiator

would use the key mkSY™ ¥ for encrypting messages to send, and the responder would use the same key for
decrypting received messages.

In our model, there are technically no stages [sym-ir:z,0] or [sym-ri:z,0], but there are keys with these
indexes, since the first entry in each sending and receiving chain is created by the asymmetric update starting
that chain (see Figure). We could equivalently think of Signal only deriving message keys in symmetric stages
and allowing y = 0, in which case asymmetric stages would not derive message keys. Our formulation simply
renumbers keys, so that every stage derives a message key.

Cryptographic functions. Signal uses one of two elliptic curves to implement X3DH: curve X25519 [[12] or
curve X448 [39]. The key derivation functions are depicted in Figure @ anduse either HMAC-SHA256 [6] or
HKDF [47] using SHA256as indicated.

AEAD denotes an authenticated encryption scheme with associated data [66]]. In Signal, this is an encrypt-then-
MAC scheme: encryption is AES256 in CBC mode with PKCS#5 padding, and the MAC is HMAC-SHA256.
This is the same combination originally used in TextSecure v3, which was shown by Frosch et al. [35] to have
standard authenticated encryption security properties. Since our focus is on the key exchange portion, we omit
details of the AEAD and treat it in a black-box fashion.

Sign is related to the Ed25519 signature scheme [[13] |61]]. Again, we treat it as a black-box signature.

2.3. Registration Phase—Figure [3(a)

Upon installation (and periodically afterwards), all agents generate a number of cryptographic keys and
register themselves with a key distribution server.
Specifically, each agent generates the following DH private keys:
(i) a long-term “identity” key ik
(i) a medium-term “signed prekey” prek
(iii)) multiple short-term “one-time prekeys” eprek
The public keys corresponding to these values are then uploaded to the server, together with a signature on
prek using ik.

2.4. Session Setup Phase—Figure [3(b)

In the session-setup phase, public keys are exchanged and used to initialise shared secrets in the session
memory. The underlying key exchange protocol is a one-round DH protocol called the Signal Key Exchange or
X3D comprising an exchange of various DH public keys, computation of various DH shared secrets as in
Figure [5] and then application of a key derivation function. While many possible variants of such protocols
have been explored in-depth in the literature (HMQV [48]], Kudla-Paterson [49], NAXOS [50] among many
others), the session key derivation used here is new and not based on one of these standard protocols, though it
draws some inspiration from [49].

Recall that for asynchronicity Signal uses prekeys: initial protocol messages which are stored at an
intermediate server, allowing agents to establish a session with offline peers by retrieving one of their cached
messages (in the form of a DH ephemeral public key).

In addition to this ephemeral public key, agents also publish a “medium-term” key, which is shared between
multiple peers. This means that even if the one-time ephemeral keys stored at the server are exhausted, the
session will go ahead using only a medium-term key. This form of key reuse is studied in [56]] and will be
modelled in this paper. Thus, session setup in the Signal protocol consists of two steps: first, Alice obtains
ephemeral values from Bob (usually via a key distribution server); second, Alice treats the received values as
the first message of a Signal key exchange, and completes the exchange in order to derive a master secret.

2.4.1. Receiving ephemerals. The most common way for Alice to receive Bob’s session-specific data is for
her to query a semi-trusted server for pre-computed values (known as a PreKeyBundle).

When Alice requests Bob’s identity information, she receives his identity public key ipk g, his current signed
prekey prepky, and a one-time prekey eprepky if there are any available. Signed pre-keys are stored for the
medium term, and therefore shared between everyone sending messages to Bob; one-time keys are deleted by
the server upon transmission. Alice’s initial message contains identifiers for the prekeys so that Bob can learn
which were used.

2.4.2. Building a session. Once Alice has received the above values, she generates her own ephemeral key
ek 4, and computes a session key by performing three or four group exponentiations as depicted in Figure [3
She then concatenates the resulting shared secrets and passes them through a key derivation function (KDF,,

3. The key exchange protocol was sometimes referred to as TripleDH, from the three DH shared secrets always used in the KDF
(although in most configurations four shared secrets are used). The name QuadrupleDH has also been used for the variant which includes
the long-term/long-term DH value, not as might be expected the variant which includes the one-time prekey.

(a) Bob’s registration phase (at install time), over an authentic channel (Section 2.3}

ik g, prekg & ZLq

multiple eprek,, k2 z, ipk, prepk g, Signy, (prepk), multiple eprepk

(b) Alice’s session (Initiator) setup with peer Bob (Responder), over an authentic channel (Section 2.4}
Client instance 7%y, stage [0]
B
ipk, prepkp, Signy, (prepkp)|; eprepk]
ek, &7, Client instance 7%, stage [0]

rehk’, & Zq epk 4, key identifier for prepk 5, rchpk’y[, eprepk ;5

(in practice attached to initial encrypted message) R
confirm possession of prek |, eprek |

ms < (prepk)™a||(ipk)| (prepk p)* ms < (ipk 4)" "5 || (epk 4) "2 || (epk o)5
if eprepky then ms < ms||(eprepkg)®a if eprepky then ms < ms||(epk 4)&
rkt, ckSY™ir00 KDF, (ms) rkt, ckSY™ir00 KDF, (ms)
Cksym-ir:OJ ,’nksym-ir:O,U — KDFm(Cksym-ir:O,O) Cksym-ir:(),l’mksym-ir:O.O . KDFm(Cksym»ir:U,O)

rehky & 7,

(c) Symmetric-ratchet communication: Alice sends a message to Bob (Section 2.3}

Client instance 7', stage [sym-ir:z,y] Client instance 7', stage [sym-ir:z,y]

AEAD, sym-irw.(s—1) (message, AD = 0), rehpk’y , ipk 4, ipk g,y

(in practice (rchpk®,ipk 4, ipky,y) are included in the associated data of this message)

Cksym—u':x,y+l7 mkSym-irey KDFm (Cksym—u':ac,y) cksym—lr:ac,y+1 , mESym-irzy KDFm (Cksym-lr:m,y)

(d) Asymmetric-ratchet updates: Alice and Bob start new symmetric chains with new ratchet keys (Section 2.6}

Client 7%, stage [asym-ri:z] Client 7%, stage [asym-ri:z]

tmp, kY0 KDF, (rk®, (rchpk® 1)eks)
Cksym-ri:x,l , mksym-ri:w.(} P KDFm(Cksym»ri:a:,O)
rchpk%_l

(in practice in the associated data of a later message encrypted with mk5y™*%:0)

tmp, kY0 KDF, (rk®, (rehpk 1)k
Cksym—ri:z:,l,’nksym—ri:w,o « KDFm(Cksym-ri:J;,O)

Client 7%, stage [asym-ir:z] Client 7%, stage [asym-ir:z]

k= HL cksymrired o KDF, (tmp, (rehpk b))
Cksym—ir::r,l , ’nksym—ir:m.(] « KDFm(Cksym—ir:.r.U)

rchpk’y

(in practice in the associated data of a later message encrypted with mk%y™ 7 "0)

rszrl7 cksym—ir:z,o - KDFr(tmp, (rchpkaﬁ‘)rchkf;l)
Cksym—ir:m,l’ 'nksym—ir::17,() « KDFm(Cksym-ir::r,,())

rehksy, & 7,

Figure 3: Signal protocol including preregistration of keys. Local actions are depicted in the left and right columns, and
messages flow between them. We show only one step of the symmetric and asymmetric ratchets; they can be iterated
arbitrarily. Variables storing keys are defined in Table [[, KDF; and KDF\, in Figure [2] and session identifiers in Table [2]
Dark red text indicates reordered actions in our model, as discussed in Section [5] Each stage derives message keys with
the same index as the stage number, and chaining/root keys with the index for the next stage; the latter is passed as state
from one stage to the next. State info st in asymmetric stages is defined as the root key used in the key derivation, and
for symmetric stages st is defined as the chain key used in key derivation. Symmetric stages always start at y = 1 and
increment. When an actor sends consecutive messages, the first message is a DH ratchet and then subsequent messages use
the symmetric ratchet. When an actor replies, they always DH ratchet first; they never carry on the symmetric ratchet.

8

Symmetric receiving Session setup Symmetric sending

ratchets ratchets
not present) 0 No---on o sym-ir:0,1 | - - - - o sym-ir:0,2 | - - - - +{ sym-ir:0,3
sym-risl,2 |« - - {sym-ri:1,1]« - 5 »
5
« g , o symeir2,1 |- - - - o sym-ir:2,2
£
sym-ri:3,2 |« - - {sym-riz31 |- 5 - »

Figure 4: An example tree of stages that one party might use in one session of Signal. The content of each node is the
stage name; recall that “ir” denotes stages deriving a key used to send from initiator to responder, and vice versa for “ri”.
In our notation, mk® denotes the message key derived by stage s. For example, mk®Y™ '™*¥ denotes the yth symmetric key
on the xth chain, used by the initiator to encrypt messages and by the responder to decrypt them. Each chain is derived by
ratcheting as in Figure [2] with a root or chain key. For the first symmetric ratchets in a session, the initiator of the session
only has a sending chain, while the responder only has a receiving chain.

initiator responder intended use

signed prekey prek 4 prek g medium-term, reused across sessions

identity key ik 4 ik long-term, bound to identity

one-time (pre)key eky <~ ---- eprekp unique to each session, never reused

Figure 5: Diffie-Hellman private keys used in the Signal Key Exchange KDF. An edge between two private keys (e.g., ik 4
and prek ;) indicates that their DH value (g%4 7™ &) is included in the final KDF computation. The dashed line is optional:
it is omitted from the session key derivation if epreky is not sent. Note the asymmetry: when Alice initiates a session with
Bob, her signed prekey is not used at all. Our freshness conditions in Section f£.3] on page [I4] will be partially based on this
graph.

Figure to derive an initial root key 7k' and sending chain key ck*¥Y™ %% (No DH value is passed to KDF,
for this initial invocation.) For modelling purposes, we also have Alice generate her initial sending message key
mkSY™ 00 (which is this stage’s session key output) and the next sending chain key ck*Y™ %0 Finally, she
generates a new ephemeral DH key rchk® known as her ratchet key.

For Bob to completeﬂ the key exchange, he must receive Alice’s public ephemeral key epk 4. In the Signal
protocol, Alice attaches this value to all messages that she sends (until she receives a message from Bob, since
from such a message she can conclude that Bob received epk 4). To disentangle the stages of the model, we
have Alice send epk 4 in a separate message; thus, once the session-construction stage is complete, both Alice
and Bob have derived their root and chain keys.

When Bob receives epk 4, he first checks that he currently knows the private keys corresponding to the
identity, signed pre-, and one-time pre-key which Alice used. If so, he performs the receiver algorithm for the
key exchange, deriving the same root key rk* and chain key (which he records as ck*Y™ %) "For modelling
purposes, we also have Bob generate his initial receiving message key mk™Y™ 00 (which is this stage’s session
key output) and the next receiving chain key ck®Y™ir:0-1,

2.5. Symmetric-Ratchet Phase—Figure [3]c)

Two sequences of symmetric keys will be derived using a PRF chain, one for sending and one for receiving.
The symmetric chains—to the left and the right in Figure f}—may be advanced for one of two reasons: either
Alice wishes to send a new message, or she wishes to decrypt a message she has just received.

In the former case, Alice takes her current sending chain key ck®¥™ %% and applies the message key
derivation function KDFy, to derive two new keys: an updated sending chain key kSt (D) and a sending
message key mk®Y™ Y - Alice uses the sending message key to encrypt her outgoing message, then deletes it
and the old sending chain key. This process can be repeated arbitrarily.

When Alice receives an encrypted message, she checks the accompanying ratchet public key to confirm
that she has not yet processed it, and if not she then performs an asymmetric ratchet update, described below.
Regardless, she then reads the metadata in the message header to determine the index of the message in the

4. If the initial message from Alice is invalid, Bob will in fact not complete a session. This does not affect our analysis, which considers
only secrecy of session keys, but may become important if e.g. analysing deniability.

receiving chain, and advances the receiving chain as many steps as is necessary to derive the required receiving
message key; by construction, Alice’s receiving message keys equal Bob’s sending keys. Unlike for the sending
case, Alice cannot delete receiving message keys immediately; she must wait to receive a message encrypted
under each one. (Otherwise, out-of-order messages would be undecryptable since their keys would have been
deleted.) The open source implementation of Signal has a hard-coded limit of 2000 messages or five asymmetric
updates, after which old keys are deleted even if they have not yet been used.

2.6. Asymmetric-Ratchet Phase—Figure [3(d)

The final top-level phase of Signal is the asymmetric-ratchet update. In this phase, Alice and Bob take
turns generating and sending new DH public keys and using them to derive new shared secrets. These are
accumulated in the asymmetric ratchet chain, from which new (symmetric) message chains are initialized.

When Alice receives a message from Bob, it may be accompanied by a new (previously unseen) ratchet
public key rchpk}’gfl. If so, this triggers Alice to enter her next asymmetric ratchet phase [asym-ir:z]. Note
that Alice already has stored a previously generated private ratchet key rchkfﬁ(l. Before decrypting the message,
Alice updates her asymmetric ratchet as per Figure [3| This consists of two steps. In the first step, denoted rchk?,
deriving two DH shared secrets [asym-ri:z], she computes a first DH shared secret (between the received
ratchet public key and her old ratchet private key), and combines this with the root chain key to derive a new
receiving chain key and receiving message key. In the second step, denoted [asym-ir:z], she computes a second
DH shared secret (between the received ratchet public key and her new ratchet private key), and combines this
with the root chain key and the first DH shared secret to derive a new sending chain key and sending message
key, as well as the root chain key for the next asymmetric stage.

The message keys in the first and second steps have slightly different security properties, so they are recorded
in our model as belonging to distinct stages [asym-ri:z| and [asym-ir:z].

Alice then sends her new ratchet public key rchpk’, along with future messages to Bob, and the process
continues indefinitely.

Bob does the corresponding operations shown in Figure [3| to compute the same DH shared secrets and
the corresponding root, chain, and message keys. While symmetric updates can be triggered either by Alice
(the session initiator) or Bob (the session responder) and thus could be as in Figure [3{c) or its horizontal flip,
asymmetric updates can only be triggered by Alice (the session initiator) receiving a new (previously unseen)
ratchet key from Bob (the session responder) and not the other way around, so Figure [3(d) will never be
horizontally flipped.

2.7. Memory Contents

Signal is a stateful protocol, and a number of different values are available in Alice’s memory at any time.
Alice’s global state—shared between all of her sessions—contains four different collections of values: identity
keys (Alice’s own identity private key, and the identity public keys of all her peers), signed prekeys, ephemeral
keys, and a list of all sessions.

Furthermore, each session in the collection of sessions above contains the keys used by the protocol.
Specifically, a session always has its agent’s identity private key and its peer’s identity public key, a current
root and sending chain key, and a current ratchet key. In addition, it has some number of receiving chain and
message keys, corresponding to out-of-order messages not yet received from the peer.

3. Threat Models

We will analyse Signal in the context of a fully adversarially-controlled network. The high-level properties
we aim to prove are secrecy and authentication of message keys. Authentication will be implicit (only the
intended party could compute the key) rather than explicit (proof that the intended party did compute the key).
Forward secrecy and “future” secrecy are not explicit goals; instead, derived session keys should remain secret
under a variety of compromise scenarios, including if a long-term secret has been compromised but a medium or
ephemeral secret has not (forward secrecy) or if state is compromised and then an uncompromised asymmetric
stage later occurs (“future” or post-compromise secrecy [23]]). We assume out-of-band verification of identity
keys and medium-term keys, and do not consider side channel attacks.

The finer details of our threat model are ultimately encoded in the so-called freshness predicate, specified
in Section on page [14] where we provide further information on our threat model design choices.

On Our Choice of Threat Model. Because at the time of writing Signal did not claim any formally-
specified security properties, as part of our analysis we had to decide which threat model to assume. The
README document accompanying the source code [53] states that Signal “is a ratcheting forward secrecy
protocol that works in synchronous and asynchronous messaging environments”. A separate GitHub wiki page

10

[60] provides some more goals (forward and future secrecyﬂ metadata encryption and detection of message
replay/reorder/deletion) but to the best of our knowledge no mention of message integrity or authentication is
made other than the use of AEAD cipher modes.

We believe that the threat model we have chosen is realistic, although we discuss later some directions in
which it could be strengthened. Parallels can be drawn, for example, with the TLS 1.3 standard [[65, Appendix
D], which discusses the following properties (where the network is fully adversarially-controlled, and where the
adversary may compromise the keys of some participants).

Correctness If Alice and Bob complete an exchange together then they should derive the same keys; distinct
exchanges should derive distinct keys.

Secrecy If Alice and Bob complete an exchange to generate a key k, nobody other than Alice and Bob should
be able to learn anything about k.

(Implicit) Authentication If Alice believes that she shares the key £ with Bob, nobody other than Bob should
be able to learn anything about k. Note that this property is implied by secrecy.

Forward secrecy An attacker who compromises Alice’s long-term secret after a session is complete should
not be able to learn anything about the keys derived in that session.

Identity hiding A passive adversary should not learn the identity of partners to a session.

It is common in the authenticated key exchange literature to assume a trusted public key infrastructure (PKI),
though some models allow the adversary more control [[17]]. In Signal the PKI is combined with the network, in
the sense that the same server distributes identity and ephemeral keys. Thus, in some sense assuming a trusted
PKI also restricts the attacker’s control over particular sessions.

Some claims have been made about privacy and deniability [69] in Signal, but these are relatively abstract. In
general, signatures are used but only for the signed pre-key in the initial handshake, meaning that an observer can
prove that Alice sent a message [28], full deniability] to someone but perhaps not to Bob [25| peer deniability].

Additionally, one might consider a threat model that includes imperfect ephemeral random number generators.
Since no static-static DH shared secret is included in Signal’s KDF, an adversary who knows all ephemeral
values can compute all secrets. However, Signal continuously updates state with random numbers, so we capture
in our threat model the fact that it is possible to make some security guarantees, if some, but not all, random
numbers are compromised.

The trust assumptions on the registration channel are not defined; Signal specifies a mandatory method for
participants to verify each other’s identity keys through an out-of-band channel, but most implementations do
not require such verification to take place before messaging can occur. Without it, an untrusted key distribution
server can impersonate any agent.

Signal’s mechanisms suggest a lot of effort has been invested to protect against the loss of secrects used in
specific communications. If the corresponding threat model is an attacker gaining (temporary) access to the
device, it becomes crucial if certain previous secrets and decrypted messages can be accessed by the attacker or
not: generating new message keys is of no use if the old ones are still recoverable. This, in turn, depends on
whether deletion of messages and previous secrets has been effective. This is known to be a hard problem,
especially on flash-based storage media [64], which are commonly used on mobile phones.

4. Security Model

In this section we present a security model for multi-stage key exchange, which we then apply to model
Signal’s initial key exchange as well as its ratcheting scheme. Our model allows multiple parties to execute
multiple, concurrent sessions; each session has multiple stages. For Signal, the session represents a single chat
between two parties, and each stage represents a new application of the ratchet. Figure [3] depicts, roughly, a
single session. There are three types of stage in Signal: the initial key exchange, asymmetric ratcheting, and
symmetric ratcheting. In addition, ratcheting stages differ based on whether they are used for generating keys
for the initiator to send to the responder (denoted -ir) or vice versa (denoted -ri). For our purposes, every stage
generates a session key; depending on the stage, this will be either the sending or the receiving message key.

On the choice of model. We choose to study the security of Signal in the traditional key exchange notion of key
indistinguishability |7, 8] (albeit a multi-stage variant), as opposed to a monolithic secure channel notion such
as authenticated and confidential channel establishment (ACCE) [41]. It is often preferable to analyze the key
exchange portion independently from the message transport layer, and then compose this with authenticated
encryption to establish a secure channel [21]]. Monolithic notions like ACCE are necessary for protocols such
as TLS, which use the session key (or values derived from it) in the channel establishment and thus prevent a
clean separation for composition. As indicated by the parenthetical comments under message arrows in Figure
Signal uses message keys to authenticate not just data (which is omitted from our key exchange model) but also
handshake messages. In our proof, we therefore modify the protocol to instead send these handshake messages

5. Future secrecy means “a leak of keys to a passive eavesdropper will be healed by introducing new DH ratchet keys” [|60].

11

in the clear, with authentication enforced via our freshness predicate. We discuss these modifications further in
Section BTl

Another subtlety compared to the multi-stage key exchange model of Fischlin and Giinther is that QUIC
and TLS 1.3 demand a linear sequence of stages, whereas for our model of Signal we use a tree of stages, as
seen in Figure [

Model notation. We present our model as a pseudocode experiment where the primitive in question (the
multi-stage key exchange protocol) is modelled as a tuple of algorithms, and then an adversary interacts with the
experiment. This approach is commonly used in many other areas of cryptography, but less so in key exchange
papers. Compared with models and experiments presented in textual format, we argue that our approach makes
it easier to understand some precise details, and easier to see subtleties in variations.

We adopt the following notational and typographic conventions. Monotype text denotes constants; serif text
denotes algorithms and variables associated with the actual protocol (variables are italicized); and sans-serif
text denotes algorithms, oracles, and variables associated with the experiment. Algorithms and Oracles start
with upper-case letters; variables start with lower-case letters. We use object-oriented notation to represent
collections of variables. In particular, we will use 7, to denote the collection of variables that party u uses in its
i protocol execution (“session”). To denote the variable v in stage s of party u’s ith session, we write 7°,.v[s];
note s is not (necessarily) a natural number. For Signal, s is [0] for the session setup stage; [sym-ir:z,y] or
[sym-ri:z,y] for symmetric sending or receiving stages; or [asym-ri:z] or [asym-ir:z| for the 1st and 2nd
portions of the xth asymmetric stage. (See also Figure {] andFigure [3])

DH protocols conventionally use both ephemeral keys (unique to a session) and long-term keys (in all
sessions of an agent). Signal’s prekeys do not fit cleanly into this separation, and in order to follow the
conventions of the field we refer to the reused DH keys as “medium-term keys”.

Generality of our model. Some aspects of our model are quite general, and others are very specific to Signal.
Our formulation of a multi-stage key exchange protocol as a tuple of algorithms, as well as the main experiment
and oracles in Figure [] should be applicable to any multi-stage key exchange protocol that includes semi-static
(medium term) keys. However, our freshness definition is highly customized to Signal via our clean clauses,
since we aim to precisely characterize the security properties of Signal’s keys.

The level of generality is an important decision when designing a security model for a protocol like Signal:
on one hand, a general model allows analysis of and comparison to other protocols; on the other, of necessity it
does not allow fine-grained statements about the specific protocol under consideration. Our model lies towards
the centre of this spectrum: we aim to keep the overall structure relatively independent of Signal (though of
necessity we added support for medium-term keys), while the cleanness predicates described later allow us to
make fine-grained assertions which capture as much as possible.

Medium-term key authentication. Signal’s medium-term keys are signed by the same identity key used for
DH, breaking key separation. Although there has been some analysis of this form of key reuse [27, [59], it is
nontrivial to prove secure. We instead enforce authentication by fiat, allowing the adversary to select any of the
medium-term keys owned by an agent, but not to inject their own. In the game, this is implemented as an extra
argument when the adversary creates a new session.

4.1. Multi-Stage Key Exchange Protocol

Definition 1 (Multi-stage key exchange protocol). A multi-stage key exchange protocol 11 is a tuple of algorithms,
along with a keyspace X and a security parameter A indicating the number of bits of randomness each session
requires. The algorithms are:

o KeyGen() A (ipk, ik): A probabilistic long-term key generation algorithm that outputs a long-term public
key / secret key pair (ipk,ik). In Signal, these are called “identity keys”.

o MedTermKeyGen(ik) kA (prepk, prek): A probabilistic medium-term key generation algorithm that takes
as input a long-term secret key ik and outputs a medium-term public key / secret key pair (prepk, prek).
In Signal, these are called “signed prekeys”; in the key exchange literature, they are sometimes called
“semi-static keys”.

Activate(ik, prek, role) — (7', m’): A probabilistic protocol activation algorithm that takes as input a
long-term secret key ik, a medium-term secret key prek, and a role role € {init, resp}, and outputs a
state 7w’ and (possibly empty) outgoing message m’.

Run(ik, prek, m,m) — (7', m’): A probabilistic protocol execution algorithm that takes as input a long-term
secret key ik, a medium-term secret key prek, a state w, and an incoming message m, and outputs an
updated state 7’ and (possibly empty) outgoing message m’'.

Definition 2 (State). A state 7 is a collection of the following variables:
o m.role € {init,resp}: the instance’s role
o m.peeripk: the peer’s long-term public key

12

o 7.peerprepk: the peer’s medium-term public key

w.status[s] € {e,active, accept,reject}: execution status for stage s, set to active upon start of a

new stage, and set to accept or reject by computation of the stage’s ratchet key.

o 7.k[s] € K: the session key output by stage s

o 7.st[s]: any additional protocol state values that a previous stage gives as input to stage s (defined as part
of the protocol).

o 7.sid[s]: the identifier of stage s of session ; this is view the actor has of the session 7 in stage s, as

defined in Figure [3]

m.typels|: the type of freshness required for this stage to have security. For Signal, this is triple,

triple+DHE, asym-ir, asym-ri, sym-ir or sym-ri.

The state of an instance 7 in our experiment models “real” protocol state that an implementation would keep
track of and use during protocol execution. We will supplement this in the experiment with additional variables
that are artificially added for the experiment. These are administrative identifiers, used to formally reason about
what is happening in our security experiment, e.g., to identity sessions and partners.

4.2. Key Indistinguishability Experiment

Having defined a multi-stage key exchange protocol, we can now set up the experiment for key indistin-
guishability. As is typical in key exchange security models, the experiment establishes long-term keys and then
allows the adversary to interact with the system. The adversary can direct parties to start sessions with particular
medium-term keys, and can control the delivery of messages to parties (including modifying, dropping, delaying,
and inserting messages). The adversary can learn various long-term or per-session secret information from
parties via reveal queries, and at any point can choose a single stage of a single session to “test”. They are then
given either the real session key from this stage, or a random key from the same keyspace, and asked to decide
which was given. If they decide correctly, we say they win the experiment. This is formalized in the following
definition and corresponding experiment.

Definition 3 (Multi-stage key indistinguishability). Let II be a key exchange protocol. Let np, ny, ns, ng € N.
Let A be a probabilistic algorithm that runs in time polynomial in the security parameter. Define

-ind -ind
AQVIEAS, g, (A) = Pr [Expars,, o (A) = 1] = 1/2
where the security experiment Expgfgrﬂ,M,nsvns(A) is as defined in Figure@‘ Note ns and ng are upper bounds
on the number of sessions per party and number of stages per session that can be established. We call an

adversary efficient if it runs in time polynomial in the security parameter.

Note that Exp™ ™ includes the following global variables:
« b: a challenge bit
o tested = (u,4,s) or L: recording the inputs to the query Test(u,,s) or L if no Test query has happened
Furthermore, Exp™ ™ extends the per-session state 7/, with the following experiment variables:
.rand[s] € {0, 1}*: random coins for 7!’s sth stage
.peerid € {1,...,np}: the identifier of the alleged peer
.peerpreid € {1,...,nyu}: the index of the alleged peer’s medium-term key
.rev_session[s] € {true, false}: whether RevSessKey(u, 7, s) was called or not; default false
.rev_random([s] € {true, false}: whether RevRand(u, 1, s) was called or not; default false
.rev_state[s] € {true, false}: whether RevState(u,, s) was called or not; default false

L]
3

[]
SR
g s.: s.: s.g s.: s.: ~.

We are working in the post-specified peer model, where the peer’s identity is learned by the actor during the
execution of the protocol, by virtue of learning the peer’s public key; and similarly for the peer’s semi-static
key. Certain aspects of the experiment require the administrative index of the corresponding key, and thus,
we assume that 7% .peerid is set to the corresponding index upon 7', .peeripk being set; and similarly for the
semi-static key index 7' .peerpreid upon 7' .peerprepk being set. (Recall that experiment-only variables are in
sans-serif.)

4.2.1. Session identifiers. We define the session identifiers sid[s] for each stage [s] of Signal in Table [2} It is
important to note that these session identifiers only exist in our model, not in the protocol specification itself.
We use them to we define restrictions on the adversary’s allowed behaviour in our model, so that we can make
precise security statements: we will generally restrict the adversary from making queries against any session
with the same session identifier as the Test session. If two sessions have equal session identifiers we say that
they are “matching”.

The precise components of the session identifiers are crucial to our definition of security: the more information
is included in the session identifier, the more specific the restriction on the adversary and hence the stronger
the security model. In particular, we do not include identities, because they are not included in Signal’s key

13

Expm=ind (A): RevSessKey(u, 1, s):

IT,np,np,ns,ns

b & (0,1} ; w%.rev_se?si]?n[s] + true
2: tested +— L return ., k[s]

3: /I generate long-term and semi-static keys RevLongTermKey(u):

4: for u = 1 to np do 1: rev_ltk, < true

5. (ipk,,ik,) & KeyGen() 2: return ik,

6: for preid =1 to ny do RevMedTermKey (u, preid):
7: (prepkPre prekPred) & MedTermKeyGen(ik,,) 1: rev_mtk2? « true

8: pubinfo < (ipky, ..., ipknwprepk%7 ..., prepkot) 2: return prek';'e'd

9: b/ ﬁ ASend,Rev*,Test(pubinfo) RevRand(u,i,s):

10: if (tested # L) A fresh(tested) Ab = b’ then 1: 7l.rev_random[s] « true
11: return 1 // the adversary wins 2: return WZL,rand[s]

12: else RevState(u, i, s):

13: return 0 // the adversary loses 3
1: m,.rev_state[s] < true

2: return T, .st[s]

Send(u, i, m):
1: if 7, = L then Test(u, 4, s):
2: /I start new session and record intended peer ﬁ 0T d onl d
3: arse 1, as 7[_1) I'eld role : " can only ca est once, aﬂ onLy on accepte smges
parse T s (m..-p N) 2: if (tested # L) or (m,.status[s] # accept) then
4 my.rand < {0,1}"*
u) .) 3 return L
5. (mh,m’) < Activate(ik,, prekTu P role; r’,.rand[0]) 4: tested < (u,1i,s)
5: /I return real or random key depending on b
6: return m’ 6: if b = 0 then
7: else _ 7: return m,.k[s]
8 s« m,.stage _ 8: else
9: (mh,m') < Run(ik,, prek™» P 7l m; 7’ rand[s]) 9o K&K
10: return m’ 10: return &’

Figure 6: Security experiment for adversary A against multi-stage key indistinguishability security of protocol II.

derivation or associated data of encrypted messages. This means that the unknown key share attack against
TextSecure [35]] is not considered an attack in our model: Alice’s session with Eve will have the same session
identifier as Bob’s session with Alice.

4.3. Freshness

From a key exchange perspective, the novelty of Signal is the different security goals of different stages’
session keys. The subtle differences between those security goals are captured in the details of the threat model.
Previously, we provided the adversary with powerful queries with which it can break any protocol. We now
define the so-called freshness predicate fresh to constrain that power, effectively specifying the details of the
threat model.

Our goal when defining fresh is to describe the best security condition that might be provable for each of
Signal’s message keys based on the protocol’s design; here, “best” is with respect to the maximal combinations
of secrets learned by the adversary. That is, we use the structure of the protocol to infer which attacks cannot
possibly be prevented, and rule them out by restricting the adversary. Our goal is to prove that, working from
the design choices made, Signal indeed achieves the best it can (without introducing further elements in the key
derivation function).

We must define fresh separately for the initial stages and for subsequent ones, since additional secrets are
introduced in later asymmetric stages. In the initial stages, our choices are based on Figure [5] on page [9] In the
graph, the edges can be seen as the individual secrets established between initiator and responder, on which the
secrecy of the session keys is based. If the adversary cannot learn the secret corresponding to one of these
edges, it cannot compute the session key. The adversary can learn the secret corresponding to an edge if it can
compromise one of the two endpoints; thus, if an adversary can learn, e.g., the initiator A’s ik, and ek 4, it can
derive the secrets corresponding to all edges. A similar observation can be made for the responder.

A vertex COVCIE] of Figure [5| gives a way for the adversary to compute the relevant session key directly. We
can think of our freshness predicate as excluding all such vertex covers; if all DH pairs were included in the
KDEF, this would yield the standard eCK freshness predicate.

In stages after the initial ones, we define modified freshness conditions to capture Signal’s post-compromise
security properties. These conditions are recursive: either the stage was fresh already, or it becomes fresh
through the introduction of new secrets.

6. A vertex cover of a graph is a set of nodes incident to every edge.

14

name sid

d[0] (triple : ipk;,ipk,., prepk,., epk;) if rype[0] = triple
s
(triple+DHE : ipk;, ipk,, prepk,., epk;, eprepk,) if type[0] = triple+DHE
.) sid[0] || (asym-ri : rchpk!, rchpk®) ifzx=1
sidlasym-ri:x]
sidlasym-ir:z — 1] || (asym-ri : rchpk™ ") ifz>1
sidlasym-ir:x] sidlasym-ri:z] || (asym-ir : rchpk?) ifz>0
. . does not exist ifx=0
sid[sym-ri:z,y]
sidlasym-ri:z] || (sym-ri : y) ifz>0
. . sid[0] || (sym: y) ifz=0
sid[sym-ir:z,y]
sidlasym-ir:x] || (sym-ir : y) ifz>0

TABLE 2: Definition of session identifiers sid[s] for an arbitrary stage s. Since our stages are named role-agnostically, the
definitions for initiator and responder stages coincide; we use ¢ to refer to the identity of the initiator and r for that of the
responder. For example, if Alice believes she is responding to Bob, then ipk, denotes Bob’s identity public key and ipk,.
denotes Alice’s. The initial asymmetric stage sid contains two ratchet keys (instead of one) since they are not used in the
initial session key derivation and thus are not contained in sid[0]. We note that sid[sym-ir:z,y| for x = 0 does not exist
because the receiver never starts a symmetric chain immediately after the handshake, always first performing a DH ratchet.

The freshness predicate fresh for our experiment works hand-in-hand with a variety of sub-predicates
(cleantripie, Cleaniripiesnue, Cleanagyn ir, Cl€aNagyn ri, Cleangyy i and cleangyy.3) which are highly specialized
to Signal to capture the exact type of security achieved in Signal’s different types of stages.

Definition 4 (Validity and freshness). Let s be the i session at agent u, and let 7 = /. .type[s] be its type (e.g.
triple, triple+DHE, ...). It is is valid if it has accepted and the adversary has not revealed either its session
key or the session key of any session with the same identifier, and fresh if it additionally satisfies cleanness:

clean,(u,i,s) is defined in the following sections
valid(u, i, s) = (n’.status[s] = accept) A =’ .rev_session|s]
A (Y g« 7l.sid[s] = 7,

i, peerid sids] = -, 4-rev_session|[s])

., -peert

fresh(u, 4, s) = valid(u, 7, s) A clean,(u, i, s)

fresh and its sub-clauses have access to all variables in the experiment (global, user, session, and stage).

4.3.1. Session Setup Stage [0]. The session key derived from a triple (resp. triple+DHE) key exchange is
derived from the concatenation of three (resp. four) DH shared secrets; thus, it will be secret as long as at least
one of the input secrets is. The cleanness predicate in this stage is thus the disjunction of three predicates, each
encoding the secrecy of one DH pair. Note that clean;ripie and cleangripiespue only need to be defined for the
initial key exchange, i.e., stage [0].

Definition 5 (cleaniyipic). Within the same context as Definition 4} define
cleangripie(u, 7, [0]) = cleanyy(u, i) V cleang.(u, i,0) V cleangy(u, 7, 0)
Definition 6 (clean;ripiespuz). Within the same context as Definition [Zl_fl, define
cleangriprespne (U, i, [0]) = cleanyripie(u, i, [0]) V cleangg(u, 7,0,0)

For the sub-clauses cleanyy in the above two definitions, our convention is that initiator’s key is of type X
and the responder’s key of type Y, where the possible types are L, M, and E for long-term (ik), medium-term
(prek), and ephemeral (ek) keys respectively, as in Figure [5] This necessitates the two definitions below of
cleanpy/cleang/cleangy for when the tested session is the initiator or responder,

These three definitions are straightforward for initiator sessions. For responder sessions, the difficult part is
that the ephemeral key is now the peer’s, not the actor’s: to ensure that it is not known by the adversary, we
have to ensure first that it was actually generated by the intended peer (meaning that the peer session must

15

exist), and second that it was not subsequently revealed (identifying the peer session using session identifiers).
The following clause helps identify that precise situation:

cleanpeere(u, i,) =3 j : 7l sid[s] = wii.peerid.sid[s]

sid[s] = -7’

i .peerid

A (Vj cl sid[s] = n

i peerid .rev_random[s])

We can now define our various clean predicates. This is a non-trivial restriction on the adversary. If the
medium-term key is corrupted then we do not permit an attack impersonating Alice to Bob: since the only
randomness in a X3DH handshake is from the initiator (and there is no static-static DH secret), such an attack
will succeed.

ﬂ;.peerpreid i
—rev_ltk, A ﬁrev_mtkﬂalpeeridv ,
7
u

¥
—rev_Itkyi peerid A Trev_mtky®
4

. .role = init
cleanpy(u, i) = i A
P 7! .role = resp

—|71i .rev_random|[0] A —rev_ltk. . 1 7 .role = init
u 7l .peerid
w

i
clean ,%,10]) = . i
el) {C'eanpeerE<u, i) A-vev itk l.role = resp

i ! .peerpreid i A
) —r,.rev_random|[0] A —rev_mtk ¢ P m.,.role = init
cleangy(u, 1, [0]) = Tiru.pe_z ‘
cleangeers(u, i, [0]) A —rev_mtkj» P 7,.role = resp
cleangs (1, 5, 5') = —ml,.rev_random(s] A cleanpeere(u, i, s") ml.role = init
EE = . ; ;
Y cleanpeere(u, i, s) A =l .rev_random[s’] ! .role = resp

Since we reveal randomness instead of specific keys, this final predicate applies to both the ephemeral keys
and the ratchet keys, a fact which we shall use later when defining cleanness of asymmetric stages.

Excluded attacks. Recall that a vertex cover of Figure [5 on page [J gives an attack which we rule out. Any
cover must include one of preky and ek, to meet the edge between them, so the only (minimal) vertex
covers for a triple handshake are the full state of B (preky,iky), the full state of A (ek,, ik,), or the pair
(preky, ek,). The former two are trivial: an agent must be able to compute its own session key, so learning
all their secrets also allows the adversary to compute it. The final pair exists because of the lack of an edge
in Signal between ik, and ikp, and means that an adversary who learns prek; and ek, can learn the session
key. In particular, since the ephemeral key is not authenticated, the adversary can generate their own ek, and
successfully impersonate A. This is the key compromise impersonation (KCI) attack of [44]; it is ruled out in
our model because cleant,ip is false if both preky and ek, have been revealed.

Since a vertex cover for a triple+DHE handshake must be a superset of the above, the only non-trivial one
is again (prekp, ek 4); this means that the KCI attack succeeds even against a triple+DHE handshake.

4.3.2. Asymmetric Stages[asym-ir:x]/[asym-ri:z|. In Signal, keys are updated via either symmetric or
asymmetric ratcheting. Asymmetric ratcheting introduces new DH shared secrets into the state, whereas
symmetric ratcheting solely applies a KDF to existing state.

It will be helpful to have the following predicate:

Definition 7 (cleangiate). Within the same context as Definition |4, define

cleangiate (u, 1, 5, 8') = =7’ .rev_state[s] A (V j 7t sid[s] = Tri,ﬁ.peeri

gosid[s'] = -’ .rev_state[s’})

i .peerid
For brevity, we will write cleansgate(u, 4, s) as a shorthand for cleangate(u, 1, s,).

The state reveal query reveals additional state information that a previous stage gives as input to stage s.
For Signal, we define as follows. For asymmetric stages, state reveal gives the root key used in the session
key computation that was derived in the previous stage; for symmetric stages, state reveal gives the chain key
derived in the previous stage.

During asymmetric ratcheting, there are actually two substages, in which keys with slightly different
properties are derived. In the first substage, the parties apply a KDF to two pieces of keying material: the root
key derived at the end of the previous asymmetric stage, and a DH shared secret derived from both party’s
previous ratcheting public keys. Keys from this substage are marked with sid[asym-ri:x]; they should be secure
if either of the two pieces is unrevealed, which is what type asym-ri captures. In the second substage, the
parties effectively apply a KDF to three pieces of keying material: the root key, a DH shared secret from the
first substage, and a DH shared secret derived from one party’s previous ratcheting public key and the other’s
new ratcheting public key. Keys from this substage are marked with sid[asym-ir:z] and should be secure if at
least one of the three pieces is unrevealed, which is what asym-ir captures.

16

Definition 8 (cleanasym_lr,cleanasym ri). Within the same context as Definition {4 l let s; = [asym-ir:x],
spi = [asym-riiz], s}, = [asym-ir:z — 1] and 5., = [asym-ri:z — 1]. Define

’ cleangg (u, 7, [0], [0]) V (cleanstate (u, 7, $ri) A cleanyi (o) (u, 4, [0])) =1
Cleanasym—ri(ua 1, Sri) =

%)

(()

cleangg(u, 1, 5,;, 5,.) V (cleanseate (U, 4, $p;) A cleanagyn iz (u, 4, s r)) r>1

cleangg (u, 1, 54, [0]) V (cleanstate(u, 7, 5i7-) A cleaNagymri (U, 4, 575)) =1
(()

Cleanasym—ir(u7 i; Sir) =

cleangg(u, 1, 54, 57,.) V (cleanseate (U, 4, i) A cleanagypri (4,7, Sy r>1

These clauses capture the “future secrecy” goal of Signal: if a device had been compromised at some prior time,
(i.e., the party’s long-term key, past states and keys are compromised, and thus the second disjuncts are not
satisfied), but the current ephemeral keys of both parties are uncompromised and honest (cleangg(u, %, Sir, Syi)
is satisfied) then the session is clean. Similarly, vice versa the session can be clean even if the current
ephemeral exchange is compromised, just so long as the previous prior secrets are uncompromised. This captures
post-compromise security.

Note that cleangg is used twice (because cleanness of ephemerals is defined as cleanness of the random
numbers): once to show that the randomness is clean when generating ephemerals for the initial key exchange,
and once to show that it is clean when generating the first ratchet key pair.

4.3.3. Symmetric Stages [sym-ir:z,y] and [sym-ri:z,y]. For stages with only symmetric ratcheting, new
session keys should be secure only if the state is unknown to the adversary: this demands that all previous
states in this symmetric chain are uncompromised, since later keys in the chain are computable from earlier
states in the chain. Thinking recursively, this means that the previous stage’s key derivation should have been
secure, and that the adversary has not revealed the state linking the previous stage with the current one.

While the symmetric sending and receiving chains derive independent keys and are triggered differently
during Signal protocol execution, their security properties are identical and captured by the following predicate;
the different forms of the predicate are due to needing to properly name the “preceding” stage. There are
different freshness conditions depending on whether the symmetric stage is used for a message from initiator to
responder or vice versa. Moreover, the symmetric stages arising from the initial handshake (z = 0) and from
subsequent asymmetric stages (z > 0) are subtly different.

Definition 9 (cleangy,). Writing s = [sym-ir:z,y],

Cleanﬂi.type[()] (U, i, [OD z=0,y=1
cleangypir(u, 4, s) = cleansiate(u, i, 5,5) A cleanagym ir(u, i, [asym-ir:z]) z>0,y=1
cleangym ir(u, %, [sym-ir:z,y — 1)) x>0,y > 1

There is no stage of type sym-ri with z = 0, so (writing now s = [sym-ri:z,y])

. . cleanasyn ri (U, i, [asym-ri:z]) z>0,y=1
cleangypri(u, 7, s) = clean U.1.5.8) A asym-ri\U &, ,
syn-ri (U, 4, 5) state (U, 4, 5,) cleangynri(u, 4, [sym-rizz,y — 1)) x>0,y >1

We may write cleangy, to denote cleangyy ;- or cleangy, »; where it is clear which one we mean.

Excluded attacks. Since no additional secrets are included in message keys derived from symmetric ratchet
stages, these predicates simply require that the adversary has not compromised any previous state along the
chain: neither the asymmetric stage which created the chain, nor any of the intermediate symmetric stages, are
permitted targets for queries. In other words, we exclude the attack in which the adversary corrupts a chain key
and computes subsequent messages keys from it.

5. Security Analysis

In this section we prove that Signal is a secure multi-stage key exchange protocol in the language of
Section [4] under standard assumptions on the cryptographic building blocks.

The algorithms comprising the Signal protocol are given in Definition [I] and we summarise some key points
below.

We have made a few minor reorganizations in Figure [3| compared to the actual implementation of Signal.
We consider Signal to generate the first message keys for each chain at the same time that it initialises the
chain, allowing us to consider these message keys as the session keys of the asymmetric stages. Similarly, we
consider Bob to send his own one-time prekey eprepky instead of relaying it via the server. We mark these
extra steps in Dark red in Figure [3]

KeyGen and MedTermKeyGen consist of uniform random sampling from the group.

17

Activate depends on the invoked role. Our prekey reorganization described above means that the roles of
initiator and responder are technically reversed: although intuitively Alice initiates a session in our presentation,
in fact Bob sends the first message, namely his prekeys (first right-to-left flow of Figure [3[b). Thus, the activation
algorithm for the responder (Bob) outputs a single one-time prekey and awaits a response. The activation
algorithm for the initiator (Alice) outputs nothing and awaits incoming prekeys.

Run is the core protocol algorithm. It admits various cases, which we briefly describe. If the incoming message
is the first, Run builds a session as described previously: for Alice, it operates as in the left side of Figure [3(b)
and outputs a message containing epk ,; for Bob, it operates as in the right side of Figure [3[b) and outputs
nothing.

After that, there are two cases: Run is either invoked to process an incoming message, or to encrypt an
outgoing one. We distinguish between incoming ratchet public keys (causing asymmetric updates) and incoming
messages (causing symmetric updates).

(i) Outgoing message. Perform a symmetric sending update, modifying the current sending chain key and
using the resulting message key as the session key (left side of Figure [3]c)).

(ii) Incoming ratchet public key. If this ratchet public key has not been processed before, perform an asymmetric
update using it to derive new sending and receiving chain keys as in Figure [3[d). Advance both chains by
one step, and output the message keys as the session key for the two asymmetric sub-stages as indicated
in the figure.

(iii) Incoming message. Use the message metadata to determine which receiving chain should be used for
decryption, and which position the message takes in the chain. Advance that chain (according to the right
side of Figure [3[c)) as many stages as necessary (possibly zero), storing for future use any message keys
that were thus generated. Return as the session key the next receiving message key.

In the Signal protocol, old but unused receiving keys are stored at the peer for an implementation-dependent
length of time, trading off forward security for transparent handling of outdated messages. This of course
weakens the forward secrecy of the keys, though their other security properties remain the same. We choose
not to model this weakened forward secrecy guarantee, passing only the latest chaining key from stage to stage.

With these definitions, we can consider the advantage of an adversary in a multi-stage key exchange security
game against our model of the Signal protocol:

Theorem 1. The Signal protocol is a secure multi-stage key exchange protocol under the GDH assumption
and assuming all KDFs are random oracles. That is, if no efficient adversary can break the assumptions
with non-negligible probability, then no efficient adversary can win the multi-stage key indistinguishability
security experiment for Signal (and thereby distinguish any fresh message encryption key from random) with
non-negligible probability.

Proof (sketch). We give here a proof sketch. The full details and definitions of the security assumptions can be
found in the Appendix. The proof considers of each stage type and sub-clause exhaustively, and is structured
using the sequence-of-games technique.

Stage 0. We start by proving the security of the stage 0 key that is output by the triple key-exchange during
session setup. We show this via taking cases over the disjuncts in the clean;;;ip;. clause—over the different ways
the session could be clean—noting that one of cleany(u, 7), cleangy(u,4,0), cleangy(u, %, 0) must be upheld.

We bound each of these probabilities in turn by the advantage of reduction algorithms to the security
experiments of our primitives—to DH security using the GDH and ROM assumptions.

Asymmetric stages. Next we consider the security of a stage s key such that stage s has stage type asym-ir or
asym-ri. Again, we take cases over the different ways to satisfy the cleanness predicate, depending on the type
of the stage. Most cases are of the form cleangg, and for these we obtain a probability bound by replacing the
DH ratchet keys and shared secrets with values from a GDH challenger.

The only case not of this form involves cleangate, Which describes a scenario where both recent ratchet
keys were compromised but the previous stage was still secure. Secrecy here is intuitive, and the bound follows
from an inductive argument: if an adversary could win in this manner, then, assuming GDH and ROM security,
there is an adversary which could win against the previous stage.

Symmetric stages. Finally, we consider the security of stage s keys of type sym. Here there is no disjunction in
the cleanness predicate and hence only one case to consider. We replace the keys used to initialise the current
sending chain with uniformly random values, since an adversary who could detect this could win against that
previous stage.

Conclusion. The theorem follows by summing probabilities. [

6. Limitations

As a first analysis of a complex protocol, we have chosen (some) simplicity over a full analysis of all of
Signal’s features. We hope that our presentation and model can serve as a starting point for future analyses.

18

We discuss here some of the features included in Signal which we have explicitly chosen not to model and
observe limitations of our results.

Protocol Components. Non-Signal library components. The open-source libraries contain various sections of
code which are not considered part of the Signal protocol. For example, the “header encryption™ variant of the
Double Ratchet is used by Pond and included in the reference implementation, but not used by Signal itself.
Likewise, there is support for online key exchanges instead of via the prekey server. As these components are
not intended to be part of the Signal protocol, we do not analyse them.

Out-of-band key verification. To reduce the trust requirements on the prekey server, Signal supports a fingerprint
mechanism for verifying public keys through an out-of-band channel. We simply assume that long-term and
medium-term public key distribution is honest, and do not analyse the out-of-band verification channel.

Same key for Ed25519 signing and Curve25519 DH. Signal uses the same key ik for DH agreement and for
signing the medium-term prekeysﬂ (27, 59| prove security of a similar scheme under the Gap-DH assumption,
effectively showing that the signatures can be simulated using the hashing random oracle. We conjecture a
similar argument could apply here, but do not prove it; instead, we omit the signatures from consideration and
enforce authentication of the prekeys in the game. This enforced authentication means we do not capture the
class of attacks in which the adversary corrupts an identity key and then inserts a malicious signed pre-key.

Out-of-order decryption. To decrypt out-of-order messages, users must store message keys until the messages
arrive, reducing their forward security. As discussed in Section [5] we do not consider this storage.

Simultaneous session initiation. Signal has a mechanism to deal silently with the case that Alice and Bob
simultaneously initiate a session with each other. Roughly, when an agent detects that this has happened they
deterministically choose one party as the initiator (e.g. by sorting identity public keys and choosing the smaller),
and then complete the session as if the other party had not acted. This requires a certain amount of trial and
error: agents maintain multiple states for each peer, and attempt decryption of incoming messages in all of
them. We do not consider this mechanism.

Other Security Goals and Threats. Our model describes key indistinguishability of two-party multi-stage key
exchange protocols. There are other security and functionality goals which Signal may address but which we
do not study, including: group messaging properties’| message sharing across multiple devices, voice and video
call security, protocol efficiency (e.g. O-round-trip modes), privacy, and deniability.

Implementation-specific threats. We make various assumptions on the components used by the protocol. In
particular, we do not consider specific implementations of primitives (e.g. the particular choice of curve), instead
assuming standard security properties. We also do not consider side-channel attacks.

Tightness of the security reduction. As pointed out in [2], a limitation of conventional game hopping proofs
for AKE protocols is that they do not provide tight reductions. The underlying reason is that the reductions
depend on guessing the specific party and session under attack. In the case of a widely deployed protocol with
huge amounts of sessions, such as Signal, this leads to an extremely non-tight reduction. While [2]] develops
some new AKE protocols with tight reductions, their protocols are non-standard in their setup and assumptions.
In particular, there is currently no known technique for constructing a tight reduction that is applicable to the
Signal protocol.

Application Variants. Popular applications using Signal tend to change important details as they implement or
integrate the protocol, and thus merit security analyses in their own right. For example, WhatsApp implements
a re-transmission mechanism: if Bob appears to change his identity key, clients will resend messages encrypted
under the new value. Hence, an adversary with control over identity registration can disconnect Bob and replace
his key, and Alice will re-send the message to the adversary.

7. Conclusions and Future Work

In this work we provided the first formal security analysis of the cryptographic core of the Signal protocol.
While any first analysis for such a complex object will be necessarily incomplete, our analysis leads to several
observations.

First, our analysis shows that the cryptographic core of Signal provides useful security properties. These
properties, while complex, are encoded in our security model, and which we prove that Signal satisfies under
standard cryptographic assumptions. Practically speaking, they imply secrecy and authentication of the message
keys which Signal derives, even under a variety of adversarial compromise scenarios such as forward security

7. This is done in practise by reinterpreting the Curve25519 point as an Ed25519 key, and computing an EdDSA signature.

8. The implementation of group messaging is not specified at the protocol layer. If it is implemented using multiple pairwise sessions, its
security may follow in a relatively straightforward fashion—however, there are many other possible security properties which might be
desired, such as transcript consistency.

19

(and thus “future secrecy”). If used correctly, Signal could achieve a form of post-compromise security, which
has substantial advantages over forward secrecy as described in [23]].

Our analysis has also revealed many subtleties of Signal’s security properties. For example, we identified six
different security properties for message keys (triple, triple+DHE, asym-ir, asym-ri, sym-ir and sym-ri).

One can imagine strengthening the protocol further. For example, if the random number generator becomes
fully predictable, it may be possible to compromise communications with future peers. We have pointed out to
the developers that this can be solved at negligible cost by using constructions in the spirit of the NAXOS
protocol [50] or including a static-static DH shared secret in the key derivation.

We have described some of the limitations of our approach in Section [6] Furthermore, the complexity and
tendency to add “extra features” makes it hard to make statements about the protocol as it is used. Examples
include the ability to reset the state [23[], encrypt headers, or support out-of-order decryption. Cohn-Gordon and
Cremers [22] discuss these limitations in more detail.

As with many real-world security protocols, there are no detailed security goals specified for the protocol,
so it is ultimately impossible to say if Signal achieves its goals. However, our analysis proves that several
standard security properties are satisfied by the protocol, and we have found no major flaws in its design, which
is very encouraging.

Acknowledgements

The authors acknowledge helpful discussions with Marc Fischlin and Felix Giinther (TU Darmstadt) and
valuable comments from Chris Brzuska (TU Hamburg) and Trevor Perrin (Open Whisper Systems).

References

[1] Indrajit Ray, Ninghui Li, and Christopher Kruegel: eds. ACM CCS 15. ACM Press, Oct. 2015.
[2] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. “Tightly-Secure Authenticated Key Exchange”. In:
TCC 2015, Part 1. Vol. 9014. LNCS. Springer, Heidelberg, Mar. 2015, pp. 629-658.
[3] Christoph Bader, Tibor Jager, Yong Li, and Sven Schige. On the Impossibility of Tight Cryptographic Reductions. Cryptology ePrint
Archive, Report 2015/374. http://eprint.iacr.org/2015/374, 2015.
[4] Chris Ballinger. ChatSecure. URL: https://chatsecure.org/blog/chatsecure-v4-released/| (visited on 01/2017).
[5S] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. “An uninstantiable random-oracle-model scheme for a hybrid-encryption
problem”. In: Advances in Cryptology-EUROCRYPT 2004. Springer. 2004, pp. 171-188.
[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “A Modular Approach to the Design and Analysis of Authentication and Key
Exchange Protocols (Extended Abstract)”. In: 30th ACM STOC. ACM Press, May 1998, pp. 419-428.
[71 Mihir Bellare, David Pointcheval, and Phillip Rogaway. “Authenticated Key Exchange Secure against Dictionary Attacks”. In:
EUROCRYPT 2000. Vol. 1807. LNCS. Springer, Heidelberg, May 2000, pp. 139-155.
[8] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution”. In: CRYPTO’93. Vol. 773. LNCS. Springer,
Heidelberg, Aug. 1994, pp. 232-249.
[9] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: A paradigm for designing efficient protocols”. In: Proceedings
of the 1st ACM conference on Computer and communications security. ACM. 1993, pp. 62-73.
[10] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. Ratcheted Encryption and Key Exchange:
The Security of Messaging. Cryptology ePrint Archive, Report 2016/1028. http://eprint.iacr.org/2016/1028| 2016.
[11] Mihir Bellare and Bennet S. Yee. “Forward-Security in Private-Key Cryptography”. In: CT-RSA 2003. Vol. 2612. LNCS. Springer,
Heidelberg, Apr. 2003, pp. 1-18.
[12] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: PKC 2006. Vol. 3958. LNCS. Springer, Heidelberg,
Apr. 2006, pp. 207-228.
[13] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-Speed High-Security Signatures”. In:
CHES 2011. Vol. 6917. LNCS. Springer, Heidelberg, Sept. 2011, pp. 124-142.
[14] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green, Markulf Kohlweiss, and Santiago Zanella-Béguelin.
“Downgrade Resilience in Key-Exchange Protocols”. In: 2016 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2016.
[15] David Bogado and Danny O’Brien. Punished for a Paradox. Mar. 2, 2016. URL: https://www.eff.org/deeplinks/2016/03/punished- for-
paradox-brazils-facebook! (visited on 07/2016).
[16] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-record Communication, or, Why Not to Use PGP”. In: WPES. Washington
DC, USA: ACM, 2004, pp. 77-84.
[17] Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson, Bertram Poettering, and Douglas Stebila. “ASICS: Authenticated
Key Exchange Security Incorporating Certification Systems”. In: ESORICS 2013. Vol. 8134. LNCS. Springer, Heidelberg, Sept.
2013, pp. 381-399.
[18] Jacqueline Brendel, Marc Fischlin, Felix Giinther, and Christian Janson. “PRF-ODH: Relations, Instantiations, and Impossibility
Results”. In: CRYPTO 2017, Part I1I. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017, pp. 651-681.
[19] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology, revisited”. In: Journal of the ACM (JACM) 51.4
(2004), pp. 557-594.
[20] Ran Canetti, Shai Halevi, and Jonathan Katz. “A Forward-Secure Public-Key Encryption Scheme”. In: EUROCRYPT 2003. Vol. 2656.
LNCS. Springer, Heidelberg, May 2003, pp. 255-271.
[21] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels”. In:
EUROCRYPT 2001. Vol. 2045. LNCS. Springer, Heidelberg, May 2001, pp. 453-474.
[22] Katriel Cohn-Gordon and Cas Cremers. Mind the Gap: Where Provable Security and Real-World Messaging Don’t Quite Meet.
Cryptology ePrint Archive, Report 2017/982. http://eprint.iacr.org/2017/982, 2017.
[23] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On Post-Compromise Security. (A shorter version of this paper appears at
CSF 2016). 2016. URL: http://eprint.iacr.org/2016/221,
[24] Conversations. URL: https://conversations.im/| (visited on 07/2016).

20

http://eprint.iacr.org/2015/374
https://chatsecure.org/blog/chatsecure-v4-released/
http://eprint.iacr.org/2016/1028
https://www.eff.org/deeplinks/2016/03/punished-for-paradox-brazils-facebook
https://www.eff.org/deeplinks/2016/03/punished-for-paradox-brazils-facebook
http://eprint.iacr.org/2017/982
http://eprint.iacr.org/2016/221
https://conversations.im/

[25]

[26]

[27]
(28]
[29]
[30]

(31]
[32]

[33]
[34]
[35]
[36]
(371
[38]
[39]

[40]
[41]

[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]

[51]
[52]

[53]
[54]
[55]
[56]

(571

[58]
[59]
[60]
[61]
[62]

[63]

Cas Cremers and Michele Feltz. One-round Strongly Secure Key Exchange with Perfect Forward Secrecy and Deniability. Cryptology
ePrint Archive, Report 2011/300. http://eprint.iacr.org/2011/300 2011.

Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. “Automated Analysis and Verification of TLS 1.3: 0-RTT,
Resumption and Delayed Authentication”. In: 2016 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May
2016.

Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P. Smart, and Mario Strefler. “On the Joint Security of Encryption
and Signature in EMV”. In: CT-RSA 2012. Vol. 7178. LNCS. Springer, Heidelberg, Feb. 2012, pp. 116-135.

Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable authentication and key exchange”. In: ACM CCS 06. ACM
Press, Oct. 2006, pp. 400-409.

Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Secure Off-the-record Messaging”. In: WPES. Alexandria, VA, USA:
ACM, 2005, pp. 81-89.

Benjamin Dowling, Marc Fischlin, Felix Giinther, and Douglas Stebila. “A Cryptographic Analysis of the TLS 1.3 Handshake
Protocol Candidates”. In: ACM CCS 15. ACM Press, Oct. 2015, pp. 1197-1210.

Electronic Frontier Foundation. Secure Messaging Scorecard. 2016. URL: https://www.eff.org/node/82654.

Facebook. Messenger Secret Conversations. Tech. rep. 2016. URL: https://fbnewsroomus.files. wordpress.com/2016/07/secret_
conversations_whitepaper- 1.pdf (visited on 07/2016).

Marc Fischlin and Felix Giinther. “Multi-Stage Key Exchange and the Case of Google’s QUIC Protocol”. In: ACM CCS 14. ACM
Press, Nov. 2014, pp. 1193-1204.

Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Joerg Schwenk, and Thorsten Holz. How Secure is TextSecure?
Cryptology ePrint Archive, Report 2014/904. http://eprint.iacr.org/2014/904 (Version from April 5, 2016). 2014.

Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jorg Schwenk, and Thorsten Holz. “How Secure is TextSecure?”
In: Ist IEEE European Symposium on Security and Privacy. IEEE Computer Society Press, Mar. 2016.

Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael Rushanan. “Dancing on the Lip of the Volcano:
Chosen Ciphertext Attacks on Apple iMessage”. In: Usenix Security 2016. 2016.

Shafi Goldwasser and Yael Tauman Kalai. “Cryptographic Assumptions: A Position Paper”. In: JACR Cryptology ePrint Archive
2015 (2015), p. 907.

Matthew D. Green and Ian Miers. “Forward Secure Asynchronous Messaging from Puncturable Encryption”. In: 2015 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2015, pp. 305-320.

Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive, Report 2015/625. http://eprint.iacr.org/2015/625.
2015.

2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2015.

Tibor Jager, Florian Kohlar, Sven Schige, and Jorg Schwenk. “On the Security of TLS-DHE in the Standard Model”. In: CRYPTO 2012.
Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 273-293.

Tibor Jager, Jorg Schwenk, and Juraj Somorovsky. “On the Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5
Encryption”. In: ACM CCS 15. ACM Press, Oct. 2015, pp. 1185-1196.

Nadim Kobeissi. Cryptocat. URL: https://crypto.cat/security.html (visited on 07/2016).

Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. “Automated Verification for Secure Messaging Protocols and their
Implementations: A Symbolic and Computational Approach”. In: 2nd IEEE European Symposium on Security and Privacy. IEEE
Computer Society Press, Apr. 2017.

Neal Koblitz and Alfred J] Menezes. “The random oracle model: A twenty-year retrospective”. In: Designs, Codes and Cryptography
77.2-3 (2015), pp. 587-610.

Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Bjorn Tackmann, and Daniele Venturi. “(De-)Constructing TLS 1.3”. In:
INDOCRYPT 2015. Vol. 9462. LNCS. Springer, Heidelberg, Dec. 2015, pp. 85-102.

Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The HKDF Scheme”. In: CRYPTO 2010. Vol. 6223. LNCS.
Springer, Heidelberg, Aug. 2010, pp. 631-648.

Hugo Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol”. In: CRYPTO 2005. Vol. 3621. LNCS. Springer,
Heidelberg, Aug. 2005, pp. 546-566.

Caroline Kudla and Kenneth G. Paterson. “Modular Security Proofs for Key Agreement Protocols”. In: ASIACRYPT 2005. Vol. 3788.
LNCS. Springer, Heidelberg, Dec. 2005, pp. 549-565.

Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. “Stronger Security of Authenticated Key Exchange”. In: ProvSec 2007.
Vol. 4784. LNCS. Springer, Heidelberg, Nov. 2007, pp. 1-16.

Adam Langley. Pond. 2014. URL: https://pond.imperialviolet.org/ (visited on 06/22/2015).

Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu. “Multiple Handshakes Security of TLS 1.3 Candidates”. In:
2016 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2016.

libsignal-protocol-java. GitHub repository, commit hash 94fd1e38. 2016. URL: github.com/WhisperSystems/libsignal-
protocol-javal (visited on 07/2016).

Moxie Marlinspike. Advanced cryptographic ratcheting. Blog. 2013. URL: https://whispersystems.org/blog/advanced-ratcheting/
(visited on 07/2016).

Moxie Marlinspike. Open Whisper Systems partners with Google on end-to-end encryption for Allo. Blog. 2016. URL: https:
/Iwhispersystems.org/blog/allo/| (visited on 07/2016).

Alfred Menezes and Berkant Ustaoglu. “On Reusing Ephemeral Keys in Diffie—Hellman Key Agreement Protocols”. In: Int. J. Appl.
Cryptol. 2.2 (Jan. 2010), pp. 154-158.

Vinnie Moscaritolo, Gary Belvin, and Phil Zimmermann. Silent Circle Instant Messaging Protocol Specification. Tech. rep. Archived
from the original. Dec. 5, 2012. URL: https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/
silentcircle/assets/downloads/SCIMP_paper.pdf| (visited on 07/2016).

Tatsuaki Okamoto and David Pointcheval. “The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes”.
In: PKC 2001. Vol. 1992. LNCS. Springer, Heidelberg, Feb. 2001, pp. 104-118.

Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thomson. “On the Joint Security of Encryption and Signature,
Revisited”. In: ASIACRYPT 2011. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 161-178.

Trevor Perrin. Double Ratchet Algorithm. GitHub wiki. 2016. URL: https://github.com/trevp/double _ratchet/wiki (visited on
07/22/2016).

Trevor Perrin. The XEdDSA and VXEdDSA Signature Schemes. Specification. Oct. 2016. URL: https://whispersystems.org/docs/
specifications/xeddsa/| (visited on 07/2016).

Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm. Specification. Nov. 2016. URL: https://whispersystems.org/
docs/specifications/doubleratchet/| (visited on 01/2017).

Trevor Perrin and Moxie Marlinspike. The X3DH Key Agreement Protocol. Specification. Nov. 2016. URL: https://whispersystems
org/docs/specifications/x3dh/ (visited on 01/2017).

21

http://eprint.iacr.org/2011/300
https://www.eff.org/node/82654
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
http://eprint.iacr.org/2014/904
http://eprint.iacr.org/2015/625
https://crypto.cat/security.html
https://pond.imperialviolet.org/
github.com/WhisperSystems/libsignal-protocol-java
github.com/WhisperSystems/libsignal-protocol-java
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/allo/
https://whispersystems.org/blog/allo/
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://github.com/trevp/double_ratchet/wiki
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/x3dh/
https://whispersystems.org/docs/specifications/x3dh/

[64]
[65]
[66]
[67]
[68]
[69]

[70]

J. Reardon, D. Basin, and S. Capkun. “SoK: Secure Data Deletion”. In: Security and Privacy (SP), 2013 IEEE Symposium on. May
2013, pp. 301-315.

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet-Draft draft-ietf-tls-tls13-14. July 2016. URL:
http://www.ietf.org/internet-drafts/draft-ietf- tls-tls 13- 14.txt.

Phillip Rogaway. “Authenticated-Encryption With Associated-Data”. In: ACM CCS 02. ACM Press, Nov. 2002, pp. 98-107.
Andreas Straub. OMEMO Encryption. Oct. 25, 2015. URL: https://conversations.im/xeps/multi-end.html| (visited on 07/2016).

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and Matthew Smith. “SoK: Secure
Messaging”. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2015, pp. 232-249.

Nik Unger and Ian Goldberg. “Deniable Key Exchanges for Secure Messaging”. In: ACM CCS 15. ACM Press, Oct. 2015,
pp. 1211-1223.

WhatsApp. WhatsApp Encryption Overview. Tech. rep. 2016. URL: https://www.whatsapp.com/security/ WhatsApp- Security -
Whitepaper.pdf (visited on 07/2016).

22

http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-14.txt
https://conversations.im/xeps/multi-end.html
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Appendix A.
On Hardness Assumptions and the Random Oracle Model (ROM)

When performing a game-hopping security proof in an extended Canetti-Krawczyk-style model, after each
hop we must show that the resulting game is similar to the original. If certain values have been changed, the
queries whose results differ must be simulated in an indistinguishable manner.

In particular, the eCK family of models all contain a query RevSessKey which reveals the session key
derived by a targeted session. This models for example cryptanalysis of a large volume of encrypted traffic,
or the ability to read certain locations in memory. When replacing certain DH keys with random values, we
must ensure that the resulting game is similar to its original. For protocols using only ephemeral DH values g
and g¥ to compute session keys from ¢*¥, replacing g* and g¥ by random does not affect other sessions, and
thus other RevSessKey queries are not affected. However, for more complex protocols (such as NAXOS and
HMQV) in which the long-term keys are also included in the session key derivation, this game hop becomes
more complex. Specifically, when the long-term keys are modified, all RevSessKey queries are affected, and
their simulation is no longer trivial.

There is a proof obligation to show that the simulation of these queries does not allow an adversary to
distinguish the two games. One way to do this is by using Gap-DH in the random oracle model, assuming that
the KDF is a random oracle. In the simulation, whenever the adversary makes a query to the random oracle,
the challenger tests the relevant part of the argument using the DDH oracle to determine whether the adversary
has successfully derived the DH secret. If so, the simulation can terminate and the challenger uses this value in
the Gap-DH game. This is the approach we take.

There are known issues with the ROM. An alternative to Gap-DH is to take a PRF-ODH (pseudorandom
function with oracle DH) assumption, which effectively provides an oracle for session key computations, and
(roughly) asserts that it is hard to solve computational DH even with access to the oracle. The game hop then
takes the computational DH values from the PRF-ODH game, and answers RevSessKey queries by querying
the oracle. The probability jump over the game is thus bounded by the PRF-ODH advantage.

There is a further complication in the case of Signal. In most normal DH protocols, there is only one method
to compute a session key given a collection of secret inputs; such a method could be called a “combinator”. For
example, in NAXOS the combinator hashes one long-term key and uses that as a DH exponential. In Signal, on
the other hand, there are many different combinators, and the oracle we use must be sufficiently flexible to
simulate all of them. Thus, we have the following options:

(i) Define a PRF-ODH game parameterised by the combinator K used to assemble secrets into the arguments
to the KDF. For each different type of key in Signal, assume hardness of this game and use this assumption
to justify a game hop.

(i1) Assume that the KDF is a random oracle, and justify the game hop directly from the ROM and Gap-DH.

We choose the latter option, since we believe that the former hardness assumption is not necessarily justified.
However, we conjecture that a carefully-formulated PRF-ODH game could be proven hard in the ROM, and
therefore that one proof could effectively take either option depending on the reader’s opinions. We leave such
a game for future work.

Definitions of Hardness Assumptions

Our proof of security relies on standard cryptographic hardness assumptions related to DH key exchange. Let
G = (g) be a cyclic group of prime order ¢ generated by g, let «, 3,7 & Zq, and let Oppy be an efficient black

box algorithm (oracle) that, on input (g%, g¥, g%), outputs 1 if g* = g®¥ and 0 otherwise. For any algorithm D
let

el o 3
6DDH(,Z)) = PI‘ [D(G;qvgvg 79579 ,8) = 1 : aaﬁ — qu|

o $
—Pr [D(G,qﬂ,g 07,97 =1:a,8,7 <—Zq}

(0% « $
6CDH(IZ)) =Pr [D(quvgag agﬂ) =g s : O‘aﬂ <~ qu|
e (6% $
econ(D) = Pr [DODD”(G,qvg,g 9") =9 ia, B & Zq}

We make use of the following cryptographic hardness assumptions:

(i) Decisional Diffie-Hellman (DDH): it is hard to distinguish (¢, g%, g®#) from (¢, ¢%, ¢"), i.e., eppu(D)
is negligible in log(q) for any efficient D.

(ii) Computational Diffie-Hellman (CDH): it is hard to compute the value g®? from (g%, g”), i.e., ecpu(D) is
negligible in log(q) for any efficient D.

23

(iii) Gap Diffie-Hellman (GDH) [58]: it is hard to compute the value g®® from (g®, g°) even when given black
box access to a DDH oracle, i.e., egpu(D) is negligible in log(q) for any efficient D.

We also make use of the random oracle model (ROM), instantiating all KDF's as black boxes which return a
uniformly-random output for any given input.

Appendix B.
Security Proof

The proof considers different cases corresponding to the possible behaviour of an adversary. We first describe
the high-level proof structure in We then recall the main theorem and provide the actual proof in

B.1. Protocol Modifications for Key Indistinguishability

In order to apply a Bellare-Rogaway style key indistinguishability model for key exchange, in our proof we
make two modifications to the Signal protocol. First, we remove all data messages from the protocol, considering
only the key exchange messages. Second, we consider handshake messages as being sent in plain text instead
of inside the associated data of the AEAD encryption of a message. Without this change, an adversary could
distinguish a Tested message key from random by using it to verify the authentication of a handshake message.

B.2. Proof Structure Overview

Security in this sense means that no efficient adversary can break the multi-stage key-indistinguishability
game for the two-party protocol Signal, parametrised by freshness condition fresh, with non-negligible probability.
Suppose for contradiction that such an adversary A exists. Whatever the behaviour of the adversary, trivially
(by the definition of the security experiment in Figure @) it can only succeed when the Tested session [s] is
fresh. By Definition E} this means that the Test(u, 1, s) query satisfies:

(i) 7 .status[s] = accept,

(ii) -’ .rev_session[s],
(iii) for all j such that 7’ .sid[s] = 77 .sid[s], —mJ.rev_session[s], and
(iv) Cleanﬂf‘.type[s] (’U,, i S)

where v denotes 7%,.peerid, the identity of the intended peer to the Tested session, and clean i rpe(s] (u,i,s8) is
a cleanness clause as referenced in Definition [d] and subsequent definitions, further restricting the adversary’s
behaviour. In the following overview, we consider the case that the Tested session is the initiator; the responder
is analogous.

Overview of the Case Distinction

A high-level overview of the proof with its main game sequences and case distinctions is given in Figure [7}
Signal has many different types of stage, and we analyse each of them separately. Formally, we start with a
sequence of generic game hops which apply to all cases, ruling out for instance the low-probability event that
two randomly-generated DH keys collide. We then guess which session the adversary will choose as the Test
session; since there can be only polynomially-many sessions this guess succeeds with non-negligible probability.
(This is the source of the looseness in the proof.)

We then make a case distinction based on the stage type of the Tested session. Each stage type has its
own cleanness predicate, and we deal with them in subcases. For example, if the adversary issues a query
Test(u, 4, [0]), then we are in the analysis of stage [0], and if the stage type is triple, then we consider in
turn the subcases where cleanpy(u,), cleang.(u, 1, [0]), or cleangy(u, 3, [0]) are true.

For each subcase, we perform an additional game hop, relying on one of the security assumptions in the
statement of the theorem. The initial game will be ms-ind, and in the final games the session key will be
replaced by a uniformly random value. By summing up the advantages along the way, we can obtain an overall
bound on the success probability of the adversary.

The game hops in each of the subcases all build on a core type of reduction to GDH: the simulator queries
for challenge values from the GDH oracle, inserting them into the game in place of certain DH keys and
simulating the responses. We then intercept all adversarial calls to the random oracle, extracting the value taking
the place of the GDH solution, and apply the DDH oracle to decide whether this value is indeed a solution. If
it is then the simulator has broken GDH; if not, we continue the simulation. We will show that replacing the
keys is not detectable by the adversary, and that violations of key indistinguishability imply solutions of the
GDH challenge.

The challenger does not know in advance which adversary behaviour it is up against—only at the end of
the game will the challenger know which of the clean predicates were satisfied. That is, the adversary might

24

cleanyy ——— -G KT-
[CT} triple ———— cleang, —————— Like [CT1]
cleangy —— > Like [CT.1]

C2.1: cleanpy —— > Same as [CT.1]

4 C2.2: cleangy ——— Same as [C1.2]
< C2.3: cleang, —— Same as [CT.J3]

[C24 cleangg ——— Like [CLL1]

[CZ} triple+DHE

[C3} Asymmetric ratchet, —— [C31} cleangy ————— Like [C24]

initial stages T [C32} not cleang G2

O} asym-ir — [CZTT} clean prev. — Like [C3]

@ Asymmetric ratchet, — IC4.1.2t clean curr. — Like |C3.1]

non-initial stages

—_— @ wsymeri = clean prev. —» L?ke @m

IC4.2.2t clean curr. — Like [C3.1]

[C311} =0,y =1 — Like [C32

—
5T i—r —> [T} 2> 0,y =1 — Like (32
[(313 2 >0,y > 1 — Like[C32
[C3} Symmetric ratchet
CS.2t r — 4 Like [CS.1]

Figure 7: High-level overview of the proof structure. Games are identified by GO, G1, ..., and main case distinctions by
Cl1, C2, ...; GO denotes the multi-stage security experiment from Section @ In the PDF version of this document, such

identifiers can be clicked to jump to the corresponding part of the proof.

decide on the fly which session to Test and which clean predicate to satisfy. As such, no global reduction can
be given. This is not a problem: in our proof, we are ultimately just ruling out classes of attacks. If an attack
exists, it corresponds to some specific adversary, which is covered by one of our cases.

Cases. We begin by considering the case that the Test(u, 4, s) query was issued on the first stage (s = [0]). We
break this up into two separate cases:
(1) the initial key exchange had stage type triple (so 3 separate pairs of DH shared secrets were used to
compute the master secret ms), or
(ii) the initial key exchange had stage type triple+DHE (so 4 separate pairs of DH shared secrets were used
to compute the master secret ms).

Case 1: triple. In the first case, where Test(u, 1, [0]) and 7% .type[0] = triple, we see by Definition [5| that
the following condition must be satisfied:

cleanpy(u, i) Y cleangg.(u, 7, [0]) v cleangy(u, 7, [0])

Case 2: triple+DHE. In the second case, where Test(u,i,[0]) and 7' .type[0] = triple+DHE, we see by
Definition [f] that there is an additional disjunct cleangg(u, i, [0]), and we must have

cleanpy(u,) Y cleangy.(u, i, [0]) Y cleangy(u, i, [0]) Y cleangg (u, i, [0])

We consider each of these cases in turn, and by a game-hopping argument replace the relevant keys by random
values, allowing us subsequently to replace the session keys with random values.

Case 3: Asymmetric ratchet, initial stage. Next, we consider the security of the case that the Test(u, 1, s)
query was issued on the initial responder-to-initiator asymmetric stage s = [asym-ri:1]. We partition this
into two cases corresponding to Definition [8} either the adversary has not issued queries that would break the
cleanness of the root key from the first stage s = [0]; or the adversary did not inject malicious DH shares in
either of the ephemeral shares used in the stage (which in particular, were generated in stage s = [0]). That is,

25

we consider the case that Test(u, i, s = [asym-ri:1]) where 7 .type[s] = asym-ri, and apply Definition |8] to
conclude that

(cleanﬂi.,)pe[o](u,z’, 0)) A cleangate(u, 1, [asym—ir:l])) \Y cleangg(u, 7,0, 0)

In a similar fashion to the argument for the initial handshake, we replace certain DH values by values from a
GDH challenger, reducing indistinguishability of the session key of this stage to hardness of GDH.

Case 4: Asymmetric ratchet, non-initial stages. We continue, considering the security of the case that the
Test(u, i,s) query was issued in the x™ asymmetric responder-to-initiator stage s = [asym-ri:z]. That is, we
consider the case that Test(u,i,s = [asym-ri:x]), where z > 2 and 7' .type[s] = asym-ri. By Definition
we conclude:

(cleanasym_ri(u, i, [asym-ri:z — 1]) A cleangate (u, 7, [asym—ir:x])) V cleangg(u, i,z — 1,z — 1)

and a similar argument holds.

We must also consider the case that the Test query was issued against an asymmetric stage of type asym-ir
i.e. a stage used to derive keys for the initiator to encrypt for the responder. The argument in this case is
analogous but the cleanness predicates are subtly different and again vary depending on whether the stage is the
first of its type. However, the core argument remains the same: we replace certain keys in the Tested session
with values from the GDH challenger, in such a way that distinguishing session keys from random would give
a GDH advantage.

Case 5: Symmetric ratchet. Finally, we consider symmetric stages. We partition into two cases:
(1) the first symmetric stage y = 1, where security follows from the asymmetric stage before it (which could
be either the initial handshake or an asymmetric stage)
(ii) a later symmetric stage y > 1, where security follows from cleanness of the previous symmetric update

B.3. Proof of the Main Theorem

Conventions. We remark on a few conventions which we adopt during the proof.

Many cases technically differ based on whether the actor of the Test session has the initiator or responder
role. For example, the first session key derived by the initiator is from a sending chain, while the first one
derived by the responder is from a receiving chain. Where the security arguments are identical except for
obvious symmetries, we just consider the case of the initiator and leave the responder as analogous.

Signal uses HMAC and HKDF within the KDF invocations. We assume that the KDF invocations themselves
(as defined in Figure [2]) are random oracles, and thus need not make any assumptions on HMAC and HKDF
specifically.

By Pr(break;) we mean the probability that the adversary wins game ;. We aim to show that Pr(breaky)
is close to 1/2. To avoid overfilling our subscripts, we overload where it is obvious which game is meant.

Theorem 1. The Signal protocol is a secure multi-stage key exchange protocol under the GDH assumption
and assuming all KDF's are random oracles. That is, if no efficient adversary can break the assumptions
with non-negligible probability, then no efficient adversary can win the multi-stage key indistinguishability
security experiment for Signal (and thereby distinguish any fresh message encryption key from random) with
non-negligible probability.

Proof. We begin by performing a series of game hops that affect all potential cases. After these, the game hops
diverge depending on which case we are considering.

Game Hops for all Cases

Game 0. This game equals the multi-stage security experiment described in Section As such the probability
of the adversary winning this game is bounded above by Pr(breaky).

Game 1. In this game we ensure no collision of honestly generated DH public keys. Specifically, the challenger
C maintains a list L of all DH private values (for ik, prek, ek, eprek, rchk) honestly generated during the game.
If a DH private value appears twice, C aborts the simulation and the adversary automatically loses. For an
adversary’s execution during the game, let np denote the total number of parties, ns the maximum number of
sessions, ny the maximum number of medium-term keys per party, and ng the maximum number of stages. We
note that there are np long-term keys in the game, a maximum of ny medium-term keys generated for each of
the np parties for a maximum of nynp medium-term keys, and a maximum of ng ephemeral/ratchet keys per
session for a total maximum of nsng ephemeral/ratchet keys. This means a total maximum of np + npny + ngng
DH keys in the list L, every pair of which must not collide. There are (lé ‘) such pairs of DH keys to consider in

26

the game. Each DH key in L is in the same group of order ¢ so collides with another key in L with probability
1/q. Therefore we have the following bound:

np+npnyv-+nsns

Pr(breaky) < w + Pr(break;)

We now know that from this game onwards each honestly generated DH public key is unique. In future
game hops we will replace certain DH values with ones sampled by a GDH challenger; this means that if
these replacement values collide, we must abort the game and will therefore be unable to answer the GDH
challenge. This will appear in game G4. Luckily, the probability of the GDH challenger producing colliding
GDH challenge values is negligible (probability 1/4), as we will see.

Game 2. In this game, the challenger guesses in advance the session 7', against which the Test(u, 4, s) query
is issued: the challenger guesses a pair of indices (u*,:*) € [1..np] X [1..ns], and aborts (and the adversary
automatically loses) if the adversary issues a Test query Test(u,,s) where (u,%) # (u*,*). This will occur
with probability !/nsne, and hence:

Pr(breaki) < nsnp - Pr(breaks)

We remark that the bound we prove in this hop is not tight, and refer the reader to [3]] for further discussions
and impossibility results regarding tightness.

Game 3. In this game, the challenger guesses an index v* € [np] and aborts if there exists a session 77 that
matches the Test session 7, but v # v*. Note that it might be the case that no such matching 7/ exists, but
this game ensures that if such a 7 does exist, v is unique and known in advance by the challenger.

We must first show that there can exist at most one identity v with the same session identifier as 7 (note v
may have multiple sessions that match 7%, as the responder does not contribute freshness in the Triple-DH case).
Alice’s session identifier for stage [0] contains ipk, (the identity public key of the peer). In G1 we ensured that
all DH values were unique, and hence the claim holds.

It follows that the challenger’s guess is correct with probability 1/np, and so:

Pr(breaks) < np - Pr(breaks)

In this game, we do not guess the partner session because the responder does not always contribute an
ephemeral key. As such, it is perfectly possible for v to have multiple sessions that match the test 7, because
the adversary may replay 7’’s ephemeral key to multiple sessions of v, which only uses the same public key
and medium term key. Only in triple+DHE does v contribute a ephemeral key (that is unique due to Game 1)
and indeed in this case we will do another game hop to guess the unique partner session in advance.

Currently, we have derived the following probability bound:

(nP-‘rnan-‘rnsns)
Pr(breakg) < + + nsnp? - Pr(breaks)

At this point, we need to partition our analysis for individual cases, with the ultimate aim of bounding
Pr(breaks) above, which is upper bounded by the maximum success probability of the adversary in each case.
Once we have bounded Pr(breaks), then we have bounded Pr(breaky) and we are done. Since this is G3,
each different case begins with a hop to some G4.

C1: Initial key exchange: type[0] = triple

First, we consider the security of Signal in the multi-stage key-indistinguishability game against an adversary
A that issues a Test(u, i, [0]) query with 7/ .type[0] = triple. By construction, the only way for the adversary
to win (with non-negligible probability) is if cleantripie(u,i,[0]) is true. We partition these scenarios into
subcases. Note also that a RevState(u, ¢, [0]) or RevState(v, 7, [0]) (where 7, is a session matching 7, if one
exists) query will reveal nothing to the adversary, as there exists no previous state. Moreover, after our game
hops, we will have replaced the Tested message key with a uniformly random value that is independent to all
other keys, so other issued RevState queries will only reveal independent root keys and chain keys. As the
state will be independent from the Tested session key, it will not help the adversary distinguish the Test session
key from random. How to simulate reveal queries will be dealt with formally in the game hops.

We now begin to separate our analysis based on sub-clauses of the cleanness predicate. Let Et*ipie
be the event that an adversary A wins the ms-ind game by issuing a Test query Test(u,4,[0]), such that

27

Diagram legend

Proved secure

I:I Assumed secure

] i One secret assumed secure, the rest A may reveal

! A may reveal

I:I Irrelevant for analysis

Figure 8: Legend for the boxes in the following diagrams. Red boxes indicate secrets that the adversary may gain access
to via Reveal queries (or by computing the secrets as a result of the Reveal query), green boxes indicate secrets that are
replaced based on the challenge, and blue boxes indicate secrets that the challenger is able to replace with random, thus
ensuring security.

Identity Key Prekey Ephemeral Key Ratchet Keyg Ratchet Key;

rehk® 1 rehpk, rehkly 1 rehpky

(rehpky)’””“3\

Alice | iky 1 ipky |

| (rchpk%)’”h"il | | (rchpk%)’””“i\

Bob rehk 1 rchpky rehkly | rehpky
=
Root Key @ rks

N

Chaining Key

rky
ir ir ir ri ri ir
ok ﬂ'T ok ﬂ'T oy | ek |

e K

Figure 9: A diagram showing the replacement of secrets in Game 6 of Case 1.1. In particular, [_ _' denotes secrets that the
adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query); denotes
secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets that the
challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this case;
and [__ denotes secrets one of which is assumed uncompromised but the rest may be revealed by A.

triple triple Etriple

7l .type = triple, and let Eeany (€8P Ecan s Edeany,) be the sub-case in which additionally cleanpy(u,)

(resp. cleangy (u, i, [0]), cIeanEM(u,Mi, [0])) is true. By definition of clean;yipie,
Pr<Etrip1e) — max {PI‘ (Etriple) ,PI‘ (Etriple)) ,PI‘ (Etriple .)}

cleanpy (u,%) cleangy (u,%,0 cleangy (u,7,0)
C1.1: Case type[0] = triple and cleanyy(u,):

~ In this case Ayripie issued a Test(u,,[0]) query such that cleanpy(u,) is upheld. For Test sessions where
,-1ole = init, this requires that A¢rip1e has not issued RevLongTermKey(u) or RevMed TermKey(v, n) where
m,,.peerpreid = n. Since we do not consider the signatures over the medium-term prekeys in our model, we
may assume that 7! has received prepk] without modification.

Recall that an honest session derives a master secret ms = gu kv || g¢%u o || g% 'Peky and then assigns
k|| ckSY™ir00 HKDF (ms).

Our goal will be to replace the session key with a random value so that the adversary cannot guess the
hidden bit (game 7). Since we are working in the random oracle model and the session key is the output of a
call to the random oracle, this means the adversary must query the random oracle on the exact input (game 6).
We embed a Gap Diffie-Hellman challenge into one of the components of the input to the random oracle. For
this particular case (C1.1), which depends on the cleanyy(u, i) condition, we embed the GDH challenge into
the long-term key of party v and one of the medium-term keys of the peer v (hop from game 5 to game 6). In
order do this embedding, we must guess which of the medium-term keys of the peer is actually used (game 4).
(There is also a minor technicality covered in game 5, described below.)

28

Game 4. In this game, the challenger guesses the index n € [1..nu] of the signed prekey of the peer (prek;))
that the Test session will use in the execution of the protocol, and aborts if the guess is wrong. This yields that

Pr(breaks) < ny - Pr(breaky) .

Game 5. In this game, the experiment does not abort if ipk,, and prepk;, are the same. (Recall that in Game 1,
we added an abort event if any DH values were the same. We will soon want to employ a GDH challenger, but
the two challenge public keys in a GDH challenger may (with small probability) be the same, so we need to
re-allow that in our game hops.) Since the keys are elements of a group of order g, the probability that one of
them equals the other is 1/¢ and thus

Pr(breaks) < '/q+ Pr(breaks) .

Game 6. In this game the experiment aborts if the adversary queries g™« = CDH(ipk,,, prepk") as the
first component of a call to the HKDF random oracle; denote this event aborts. Thus,

Pr(breaks) < Pr(breaks) + Pr(aborts) .

We now need to bound Pr(aborts). To do so, we show that, whenever event aborts occurs, we can construct
an algorithm By that can win the Gap Diffie-Hellman problem. In the GDH experiment, B, receives as input a
DH pair (g%, g?) (for a and 3 unknown to By), and has access to an oracle Oppy that on input (g%, g¥, g%)
returns 1 if and only if g*¥ = g*.

By will simulate game 5, except that it replaces ipk, with g® and prepk! with g”. Because certain keys
have been replaced with public keys whose corresponding private values are unknown to By, we must define
the actions that should be taken when these private values would normally be used in a computation. Cleanness
implies that —rev_ltk, A —rev_mtk?, so By will not need to answer any Reveal queries from A on these values.
However, since By has replaced the long-term identity key and a medium-term public key of two parties, if A
decides to direct parties u or v to execute the protocol in a non-Tested session, then By may need to perform
simulations of concrete computations with the private keys v and 3, despite not knowing them. There are three
distinct types of sessions in which By may lack the private keys needed to compute the master secret ms of
that session:

(i) a non-Tested session between user u and user v using prek,, where u is the initiator;
(i1) a non-Tested session between user v and some other user (possibly v or not) where u is the responder;
(iii) a session between a user other than w and user v using prek;, where v is the responder.

In session type (i), the simulator does not know CDH(g®, g”) which would be an input to the KDF
computation of the session key (in fact this is the value that the simulator needs to find in the GDH game). In
session type (ii), the simulator does not know CDH(g®, g¢) for unknown, potentially maliciously chosen, e. In
session type (iii), the simulator does not know CDH(g”, g¢) for unknown, potentially maliciously chosen, e.

In each of these types of sessions, By will pick random keys rk', ck®™ 00 rather them deriving than via
HKDF(ms). By maintains a list of all sessions in which random keys have been substituted: the list contains
the random session keys as well as the public keys that should have been used to compute each component
of the master secret. 5y must also ensure that key values used are consistent with any queries that .A makes
to the random oracle HKDF. We are concerned about queries of the form g*'|g*2||g*¢. Before answering
any such query, By goes through each entry in the above list of sessions: for each entry in the list, it uses its
DDH oracle to check if the public keys that should have been used to compute each component of the master
secret match the corresponding component (g**, g*2 or g®3) of this random oracle query. For example, for
session type (i) this amounts to querying the DDH oracle Oppy(g®, ¢°, g**) and possibly Oppn(g¢, g°, g%2).
If all components, when queried in the DDH oracle, return 1, then By uses the randomly chosen keys from that
element of the list as the random oracle response; otherwise, 3y samples a new random value as the random
oracle response. Similarly session types (ii) and (iii) can be simulated.

(While the explanation above starts from By picking random session keys when simulating a session and
then ensuring random oracle queries are answered consistently, By must also do the reverse: when simulating a
session, before picking random keys B analogously use its DDH oracle to check if this matches a previous
random oracle query, to ensure correct simulation.)

Note the session type (i) is special: if Oppu(g®, g®, g*') = 1, then the adversary has found the solution to
the GDH problem for us, and By can use ¢g”' as its answer to the GDH challenger. Moreover, this is exactly
when the event abortg occurs.

Pr(aborts) = ecpu(Bo) -

Game 7. In this game, the experiment replaces the session key in the Test session with a uniformly random key
from the same space. Because of the abort in game 6, we know that the adversary never queried the random

29

Identity Key Prekey Ephemeral Key Ratchet Key Ratchet Key;

Alice rehky / rehpk rehky 1 rehpky
(rchpk%)”hki | (rchpkOB)”hki‘ | | (rchpk%)’c”kk
Bob rehk 1 rehpk rehkly | rehpkly
q :
Root Key a @ rky

Q

ir ir ir 0 T ar
ek ok o e
Message Key mkir,

Figure 10: A diagram showing the replacement of secrets in Game 5 of Case 1.2. In particular, (_ _' denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);

denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and [_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by A.

Chaining Key

oracle HKDF on the input s that was used to compute the session key rk' || ck®™ 00 of the Test session.
Thus, in the random oracle model,
Pr(breakg) = Pr(breaky) .

Finally, since the session key is uniformly random and independent of the hidden bit, the adversary has no
advantage in guessing the hidden bit and winning the experiment:

Pr(breaks) =1/2 .

C1.2: Case type[0] = triple and cleang(u,,0)

In this case the adversary Axyip1e has issued a Test query Test(u, 4, [0]) such that cleangy (u, i, [0]) is upheld.
For Test sessions such that }.role = init, this means that A¢ipe has not issued RevRand(u,1,[0]) and
RevLongTermKey(v) where v = x,.peeripk. For Test sessions such that ©’,.role = resp, this means that
Atripie has not issued RevLongTermKey(u) and a RevRand(v, 7, [0]) such that 7] .sid[0] matches the Test
session ?,.sid[0].

Game 4, 5, 6. The argument for this case is almost identical to that of the previous case, except we no longer
need to guess the index of the long-term key of the responder or the ephemeral key of the initiator. The GDH
challenge values g, g” are inserted into the simulation in Game 5 in place of the ephemeral key of the initiator
and the long-term key of the responder. Thus

Pr(breaks) < '/q+ egpu + /2
C1.3: Case type[0] = triple and cleangy(u, 1, [0])

Game 4, 5, 6, 7. In this case, the adversary Asripie has issued a Test query Test(u,i,[0]) such that
cleangy(u, i, [0]) is upheld. For Test sessions such that 7 .role = init, this means that Asripie has not
issued a RevRand(u,4,0) and RevMedTermKey(v, 7’,.peerpreid). For Test sessions such that 7’,.role = resp,
this means that A¢ip1. has not issued a RevRand(wv, , [0]) such that 7 .sid[0] matches the Test session 7,.sid|[0]
and RevMedTermKey(u, 7?,.prepk).

Again, this is analogous to before. We begin by guessing the index of the signed prekey of the responder,
incurring a factor of ny. The Gap-DH challenge values g%, ¢° are inserted into the simulation in Game 6 in
place of the ephemeral key of the initiator and the particular medium-term key of the responder used in the
Test session. Thus

Pr(breaks) < nm - (Y/q + €cpu) + 1/2

30

Identity Key Prekey Ephemeral Key Ratchet Key Ratchet Key;

Alice rehky / rehpk rehky 1 rehpky
(rchpk%)”hki | (rchpkOB)”hki‘ | | (rchpk%)’c”kk
Bob rehk 1 rehpk rehkly | rehpkly
q :
Root Key a @ rky

rky Q
ir ir ir 0 T ar
ckoo cko 1 ckoo ckoyo kot | | ckio |

Message Key mk mkiy

Figure 11: A diagram showing the replacement of secrets in Game 6 of Case 1.3. In particular, (_ _' denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);

denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and [_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by A.

Chaining Key

C2: Initial key exchange: fype[0] = triple+DHE

Recall that the initial key exchange can also have type triple+DHE, in which case cleanness requires that
cleanpy(u, i) V cleangy(u, %, [0]) V cleangy(u, ¢, [0]) V cleangg(w, 7, [0])

We now consider the case that the adversary has issued a Test query Test(u, i, [0]) where the stage 7% .type[0] =
triple+DHE. We note that the cases are the same as previously, with the additional case cleangg(u,,[0]). As
before, we define

. :,gﬁi:J’DHE to be the event that an adversary wins the multi-stage key-indistinguishability game where A
has issued a Test query Test(u, 1, [0]) and cleaniy(u,4) is upheld,
z,z:EI:JrDHE where A has issued a Test query Test(u, ,[0]) and cleangy(u, 4, [0]) is upheld,
o ELPTE wwhere A has issued a Test query Test(u,i, [0]) and cleang (u, i, [0]) is upheld, and

EtripELewHE
® cleangg

where A has issued a Test query Test(u, 4, [0]) and cleangg(u, %, [0], [0]) is upheld.

We will bound the adversary’s success probability as follows.

Pr(Etriple+DHE) = max {Pr(Eﬂ:riple+DHE‘.)7 Pr(Etriple+DHE)7 Pr(Etriple+DHE)7 Pr(Etriple+DHE)}

cleanyy (u,7) cleang (u,,[0]) cleangy(u,,[0]) cleangg (u,,[0],[0])

The bounds for the previous summands are proved to be negligible under our cryptographic assumptions exactly
as above, yielding the inequalities as desired. As before, the crucial proof step in each case is the Gap-DH
assumption. However, for this case it will also make a game hop like Game 3, where we additionally know
Bob’s unique matching session in advance. We can do this now because Bob has freshness in the handshake.

C2.4: Case type[0] = triple+DHE and cleangg

Game 4, 5, 6, 7. The final ephemeral-ephemeral case E:lgﬁi?DHE is analogous to previous cases except that

in Game G6 (Ezlrezﬁi;w“), we need to replace the ephemeral values of both the initiator and the responder.
(Since the simulator in G4 will never reuse ephemeral values in a different session, the simulation in this case
is simpler and will not need to use its DDH oracle to maintain consistency.) We have to consider that the
responder party generates a list of one-time ephemeral keys that new sessions (used in sessions executed by the

responder) may use, and thus G4 now incurs a factor of ns. Thus

Pr(breaks) < ns - (1/q+ €cpn) + /2

31

Identity Key Prekey Ephemeral Key Ratchet Key Ratchet Key;

Alice rehky / rehpk rehky 1 rehpky
(rchpk%)”hki | (rchpkOB)”hki‘ | | (rchpk%)’c”kk
Bob ‘ rehk 1 rehpk rehkly | rehpkly
q :
Root Key rky @ @ rky

Chaining Key

ir ir ’LT 77 T ir
ckg o ckg 1 <IT ckg o cko'o cko'y | | cki'g |

Message Key mk mkéﬂ

Figure 12: A diagram showing the replacement of secrets in Game 6 of Case 2.4. In particular, (_ _' denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);

denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and (_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by .A.

C3: Asymmetric ratcheting, initial stage

We have now proved security of the initial key exchange, optionally including the ephemeral-ephemeral
DH computation. We next move on to the asymmetric-ratcheting stages, in which Bob and Alice take turns
generating new DH ephemerals and updating their root keys. The first asymmetric-ratcheting stage differs
slightly from its successors since it immediately follows the initial handshake, and we deal with it here now.
Recall it is of type asym-ri, since it is performed when Bob wishes to send a message to Alice.

We consider an adversary A that issues a Test(u,4,s = [asym-ri:1]) query, where stage s must have
type = asym-ri. Note that the initial asymmetric stage is always of type asym-ri (messages from Alice to
Bob before this stage are sent using the symmetric chain derived from the initial handshake), and thus in this
section we do not need to consider initial stages of type asym-ir. We define

o E3¥mTi {0 be the event that an adversary A wins the multi-stage key-indistinguishability game by issuing
a Test(u, i, s = [asym-ri:1]) query,

ZZ’E.;@ i 0)) to be the sub-event of Fasyneri sati§fying cleange (v, i, (0], [0]), and
o ERSYTTE , to be the sub-event of E®9™* satisfying
clean i eo) (4:3,[0])

cleanzi iypefo) (4, 3, [0]) A cleanstate(u, i, [asym-ri:1]).
It follows from our definition of freshness that

Pu() <o { BT) PR i) ®

cleangg (u,i,[0

and we consider these two cases in turn, beginning with the case that cleangg(u, 7, [0], [0]) is upheld.

C3.1: Case s = [asym-ri:1], type[s| = asyn-ri and E32 "

Game 4, 5, 6, 7. This case is dealt with similarly to case 2.4, with the only substantial differences being that
the GDH challenge values are substituted into the ratchet keys ¢""*i and ¢"” 0 and we do not need to guess
the index of the ratchet keys. Since we have a randomness-reveal query instead of queries for specific keys, the
predicate cleangg covers secrecy both of the handshake ephemerals and of the initial ratchet keys, which are
generated at the same time. Thus

Pr(breaks) < '/q+ egpu + /2

C3.2: Case s = [asym-ri:1], type[s] = asym-ri and E>*V""* (i 0])

cIeanTrZ pe[0]

In this case, cleanness comes from the initial key exchange (i.e., from one of its three or four disjuncts),
and the fact that the adversary has not revealed the state linking the initial key exchange to this stage. The

32

Identity Key Prekey Ephemeral Key Ratchet Key Ratchet Key;

Alice rehky / rehpky rehky 1 rehpky
| (eprepkg)™s | (rehpkly)™ | | rephly) | [rehphly
B
Bob eprekp | flf':eelflij rehk% 1 rehpk rehkly | rehpkly
; a
Root Key a @ rky

R
aini ir ! i i ir
Chaining Key | ckgg ckoyo ko1

Message Key i mkffg 3 i mkg,.l | mki’{fo

Figure 13: A diagram showing the replacement of secrets in Game 6 of Case 3.1. In particular, (_ _' denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);
denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and [_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by A.

Identity Key Prekey Ephemeral Key Ratchet Key, Ratchet Key,
Alice \rchk’y | rehpk, ! rehky 1 rehpky
 (rehpky s || (rehpkly) s | | (rehpky) s
Bob | rehk | rehphl rehk, 1 rehpk,
Root Key rks

Chaining Key

LT LT ar

Message Key

Figure 14: A diagram showing the replacement of secrets in Game 7° of Case 3.2. In particular, [_ _ denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);

denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and 1_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by .A.

initial key exchange derives rk;: we perform one game hop to replace that value with a uniformly random
value; the game hop is indistinguishable assuming the security of rk;, which follows from Cases 1 and 2. Game
7' is indicated below.

Game 7’. In this game we replace the root key rk; derived in stage [0] by both the Test session and any
matching peers with a uniformly random value. Thus Pr(breaky).

An adversary which can distinguish G7’ from its predecessor game can distinguish the root key from a
random value. The root key was derived in the initial triple (or triple+DHE) handshake by applying KDF;
to the master secret ms. In Case 1 (or Case 2), we argued that all values derived from ms using HKDF
were indistinguishable from random. Thus, an adversary that wins here contradicts the security of Case 1
(or Case 2). Recall that we denote with Pr(E*P1¢) the adversary’s probability of success in breaking the
key-indistinguishability of Case 1, and with Pr(E***P1e*HE) we denote the adversary’s probability of success
in breaking the key-indistinguishability of Case 2. Given that only one of Case 1 or Case 2 applies (given
how the initial key exchange is either of type triple or type triple+DHE), then the adversary’s probability
in distinguishing this change is max{Pr(E**Ple) Pr(E*P1e*PHE)L Note that Pr(E*Pe) < Pr(EFrripletDiE),
given that Pr(E®¥iPle) = max{Pr(E P) Pr(ESPe O Pr(ERP)1 and Pr(EtripletDEE) —

cleanpy (u,?) cleang, (u,,0) cleangy (u,7,0)

33

max{Pr(Ej <), Pr(E g T))y Pr(E g o)) Pr(E e 01, (o)y) > and that the upper bounds
on the first three subcases of both Case 1 and Case 2 are identical.

After replacing the root key rk,, it is straightforward to see that it is impossible for the adversary to
differentiate keys derived in this stage—chaining keys ckY™ %0 and ckSY™ %1 messaging key mkSY™ riz:0
and intermediate value ¢mp from random: these are derived by applying KDF, to rk; and then KDF,, to that
result. Since both KDFs are modelled as random oracles, and the input to KDF; is an independent uniformly

random value, the adversary has no advantage is distinguishing this stage’s session key from random. Thus

s

Pr(breaky) = Pr(EtPIeHE) | 1/
C4: Asymmetric ratcheting, non-initial stages

At this point we move on to arbitrary subsequent asymmetric stages. We assume that the initial handshake
was of type triple, but the case of triple+DHE is analogous. The intuition for this part of the proof is
essentially induction and post-compromise security:

« root keys provide security because they come from previous stages which are secure; or
« shared secrets derived from pairs of ephemeral keys provide security even if the root key at the time is
compromised.

We first make a case distinction on the direction (asym-ir vs. asym-ri), and then deal with these cases in turn.
C4.1: Asymmetric ratcheting, s = [asym-ir:z], x > 1, type[s| = asym-ir

Definition (8| requires that one of the following conditions must be satisfied if clea nasym_ir(u, i, [asym-ir:x])
is to hold.

o event BT ;rrev cleanagym ri (u, i, [asym-rizz — 1]) A cleangate (u, 7, [asym-ir:x])
asym-ir |
o event £, 0" " cleangg(u,i,x — 1,2 — 1)

Easym— ir
clean-prev

C4.1.1: Case s = [asym-ir:z|,z > 1, type[s] = asym-ir and

This case follows inductively like Case 3.2. This stage’s message key (as well as the next root and chaining
key) is derived by applying KDF, to tmp, which was derived during stage [asym-ri:z|, and then KDF}, to
the result. By an argument similar to Case 3.2, we can replace tmp with a random key. Treating the KDF as a
random oracle, this stage’s message key, as well as the next root key rk,; and the symmetric chaining keys

ckSY™ 0 and okSY™Ir®1 are then indistinguishable from random. Thus
Pr(breaks) = 1/q + Pr(EtriP16+DHE) + €apy + 1/2
Ratchet Key, 1 Ratchet Keyt Ratchet Key, 1
Alice rchkz L/ rehpk” 1 1 L rchk®y | rchpk®, rehk ™ rehpky

,,,,,,,,,,,,,,,,,,,,,,,,,,

! (rehpk b yrenka " | (rehpkt)rehka 3 (rehpky)ka

(rchpk%)rchkf‘+l

Bob | kit 5/ rehpk; 1‘ rehk; | rehpks
Root Key tmp — -
Chaining Key ckép’Jrl 0 H'T (‘kr+1 1 H'Tm
Message Key {f;’!;;%j;j mklﬂr1 0 mkftﬁrl 1
Figure 15: A diagram showing the replacement of secrets in Game 7° of Case 4.1.1. In particular, i~ _' denotes secrets that

the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);
denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and 1_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by A.

34

Ratchet Key, 1 Ratchet Key,, Ratchet Key,+1

rchk?y | rehpk?

Alice rchk* L/ rehpk” 1 ‘

ek rehpk !

,,,,,,,,,,,,,,
kag—l)rchkj‘l 1

(rehphi ') ™4 | | (rehpky)4 (rehple k5"

Bob rchky | rchpks
Root Key 37 77777777777777777 rkyyq L .
Chaining Key okit, kT H'T oKIrL H'Tm
Message Key 3:!;17];;;7[;:3 mkmﬂr1 0 mk;TH 1
Figure 16: A diagram showing the replacement of secrets in Game 7° of Case 4.1.2. In particular, |~ i denotes secrets that

the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);
denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and (_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by .A.

B asym-ir
clean-cur

C4.1.2: Case s = [asym-ir:z|,z > 1, type[s] = asym-ir and

This case is analogous to Case 3.1, with key indistinguishability following from secrecy of the DH shared
secret derived from ratchet keys. We first replace the ratchet public keys with challenge values from the Gap-DH
game, noting that cleangg implies the existence of a unique session at Bob with the same sid as that of Alice’s
session. As before, an adversary which could distinguish this game from its predecessor allows us to answer
the Gap-DH challenge, violating that assumption. Indistinguishability of this stage’s message key, as well as the
next root and chaining keys enumerated in Case 4.4.1, then follows from applying the (random oracle) KDF to
the (now independent) DH shared secret. Thus

Pr(breakg,) < 1/q + 1/2 + €GpDH
C4.2: Asymmetric ratcheting, s = [asym-ri:z],x > 1, type[s| = asym-ri

Now we come to the case of non-initial asymmetric stages of type asym-ri. The proof here is nearly
the same as in Case 4.1, except there is an extra KDF application: session keys derived by these stages are
computed by first applying a KDF to derive an intermediate value ¢mp, and second applying another KDF to
derive from tmp a session key.

Similarly, we partition our analysis into the following cases.

asym-ri

o event 0" Cprev' : cleanagym-ir (4, 7, [asym-ir:x])
asym-ri

o event 0" cleangg(u, i, z,x — 1)

C4.2.1: Case s = [asym-ri:z],z > 1, type[s| = asym-ri and Egoi"

Once again the inductive argument here is analogous to Case 3.2: secrecy follows from the root key, and
so we begin by replacing the root key with a random value. Detecting this change would violate the security
properties of the previous stage, but after it the session key is easily proven indistinguishable from random.
This stage’s message key mk®Y™ %0 a5 well as symmetric chaining keys ck®™ %0 and ¢kSY™ i@l apd
intermediate value tmp, are all also then indistinguishable from random. Thus

Pr(breaks) = 1/q + Pr(Etrip1e+DHE) + egpu + 12

Easym ri
clean-cur

C4.2.2: Case s = [asym-ri:z|,z > 1, type[s] = asym-ri and

For this case, we proceed similarly to Case 3.1. The DH shared secret can be shown indistinguishable
under the Gap-DH assumption by replacing the ratchet public keys rchk”, rchk™ " of the Test session and its

35

Ratchet Key, 1 Ratchet Key,, Ratchet Key,+1

Alice UrehkTY 1 orehpkSTt D rchkS [rehpk’ | rehk5 rehpky™

| (rchpkag—l)rrhki'l 1 (rChkaB)mth kﬂé)rshk;“

(rchpi

Bob Urehky Tt [rehpkis | rchk, | rehpk

tmp rky 1
i i ar ar ir
oy H'T ok
Message Key mkto

Figure 17: A diagram showing the replacement of secrets in Game 7’ of Case 4.2.1. In particular, |~ i denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);

denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

Chaining Key

T

case; and (_ _' denotes secrets one of which is assumed uncompromised but the rest may be revealed by .A.
Ratchet Key,_; Ratchet Key, Ratchet Key, 1
Alice \ rehky | rchpk’y | rehk T rehpk
(rehpki Y | (repks ™)K | (relpk kA (rehpky 3™
Bob rchk | rehpkf

KDF,.

z tmp L, ...

ini ri ri ir ir ir ri
Chaining Key ko —»'—(ckiy ckili1 0 ki1 ckitia ckzti0

ri ir ir
Message Key i

Figure 18: A diagram showing the replacement of secrets in Game 3 of Case 4.2.2. In particular, i~ _' denotes secrets that
the adversary may compromise via Reveal queries (or by computing the secrets as a result of the Reveal query);

denotes secrets that are replaced with the output of a Test query from a Case 1 or Case 2 challenger; [denotes secrets
that the challenger is able to replace with random, thus ensuring security; [denotes secrets that are not relevant to this

case; and [_ ' denotes secrets one of which is assumed uncompromised but the rest may be revealed by A.

matching peer with values from a GDH challenger. Indistinguishability of the stage’s message key, symmetric
chaining keys, and intermediate value ¢mp (as enumerated in case 4.2.1) all follow in turn from applying a
(random oracle) KDF to (now independent) secret values. Thus

Pr(breakg) S 1/q + €gpH + 1/2
C5: Symmetric ratcheting: type[s] € {sym-ir, sym-ri}
We finally arrive at the case of Signal in the multistage key-indistinguishability game against an adversary

A that issues a Test(u, i, [sym-ir:z,y|) or Test(u, i, [sym-ri:z,y]) query against some some symmetric stage.
In all subcases, we will show that the probability of winning is 1/2

36

Ratchet Key, 1 Ratchet Key,, Ratchet Key,+1

Alice rehk5 rehpky™
(rehpki 5™
Bob
Root Key 3 L .

Chaning e ; N l'TE o
Message Key } mk;i,o 3 mkiﬁrlyl

T

Figure 19: A diagram showing the replacement of secrets in Game 7° of Case 5.1.2s. All other subcases follow a similar
replacement strategy. In particular, | __' denotes secrets that the adversary may compromise via Reveal queries (or by
computing the secrets as a result of the Reveal query); denotes secrets that are replaced with the output of a Test
query from a Case 1 or Case 2 challenger; [denotes secrets that the challenger is able to replace with random, thus

ensuring security; [denotes secrets that are not relevant to this case; and i _ _' denotes secrets one of which is assumed
uncompromised but the rest may be revealed by .A.

C5.1: Symmetric ratcheting, s = [sym-ir:z,y|, type[s| = sym-ir

We partition into the three different freshness conditions for the case [sym-ir:x,y]. We then cover the case
of [sym-ri:z,y| similarly. The intuition is that for the first stage, the symmetric keys are derived from an
asymmetric update and their secrecy follows from the previous cases. For subsequent stages, we have security
due to the recursive nature of the freshness condition: we can replace the chain key used to derive the message
key with randomness; if the simulation did not work, then the adversary could attack the previous stage, which
is a contradiction to security of previous cases because the previous stage is fresh. In all symmetric stages, no
new ephemeral keying material is introduced, so security depends solely on the chaining state not being leaked
(which is guaranteed for these cases by cleangite).

(Recall that the case y = 0 is performed as part of the message key derivation in the previous asymmetric
update, so that the first symmetric stage derives key number 1.)

C5.1.1: Case s = [sym-ir:z,y|,z = 0,y = 1, type[s| = sym-ir

This stage’s messaging key is derived by applying a KDF, to ckSY™ir01 which was derived during the
initial triple or triple+DHE handshake. By Case 3.2, ckY™ %! s indistinguishable from random. Like
the argument in Case 3.2, treating KDF, as a random oracle, this stage’s messaging key, as well as the next
chaining key ck*Y™ %2 are thus indistinguishable from random.

C5.1.2: Case s = [sym-ir:z,y|,x > 0,y = 1, type[s| = sym-ir

This stage’s messaging key is derived by applying a KDFy, to ckSY™irel “which was derived during
asymmetric-second-stage [asym-ir:z]. By Case 4.1, ck®™ ! i5 indistinguishable from random. Like the
argument in case C.2, treating KDF,, as a random oracle, this stage’s messaging key, as well as the next
chaining key ck*Y™ 2 are thus indistinguishable from random.
C5.1.3: Case s = [sym-ir:z,y|,z > 0,y.1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFy, to ck®Y™ %% which was derived during
symmetric stage [sym-ir:z]y — 1. By Case 5.1.1, 5.1.2, or induction on Case 5.1.3, ckY™ %=1 jg indis-
tinguishable from random. Like the argument in case 3.2, treating KDF, as a random oracle, this stage’s
messaging key, as well as the next chaining key ck®™ " *¥*1 are thus indistinguishable from random.

37

C5.2: Symmetric ratcheting, s = [sym-ri:z,y|, type[s] = sym-ri

These cases are analogous to Case 5.1, by symmetry: cleanness is defined in the same recursive manner for
both sym-ir and sym-ri stages, except that the base cases differ. The initial game hops are thus analogous to
those in the asym-ir and asym-ri respectively, and the subsequent inductive argument is analogous to Case
5.1.3. O

Appendix C.
Achieving a Standard Model proof of the Signal Protocol

One drawback of the proof as it currently stands is that it sits within the random oracle model. This is
an assumption which has received some criticism from parts of the cryptographic community because, while
it is a useful assumption for proofs, it can never be satisfied in reality [9) |37]]. There are even pathological
constructions which are provably secure with random oracles, but which can never be secure when the random
oracle is replaced with any concrete primitive [5) |19]. While the use of the random oracle model does not
imply an attack, and in fact sometimes deliberately avoiding it can cause more severe problems [45]], its use
may be unsettling for some.

Therefore, in this section, we outline the process in which one could attempt a standard model proof of
the Signal Protocol in our security model. This is not a straightforward task; a naive attempt would be by
retaining the current structure of our proof and replacing Gap-DH assumptions with a pair of DDH and PRF
security assumptions. However, this approach does not fit. Similarly to previous proofs of TLS [30}, 41]], we
find ourselves relying instead on the PRF-ODH assumption. There are many different variants of the PRF-ODH
assumption throughout the literature; see [18]] for a detailed exposition of these variants. However, the crux of
the assumption is as follows. Given g* and ¢, computing a function PRF(¢"?, z) should be hard, even with
choice of = and an oracle that computes values like PRF(¢“*, ') and PRF (¢, z’) for chosen w # u,v.

Roughly speaking, the reason a PRF-ODH assumption is required is that there are long-lived keys used in
key computations in Signal that must be simulated when they are substituted out in the game hops. Before, we
used a random oracle—which, by definition, gives random replies that the simulator could just choose randomly
but consistently—to simulate these key computations. Now, we need a Diffie-Hellman oracle from the PRF-ODH
assumption to carry out the simulation. Because Signal computes keys using a PRF on Diffie-Hellman values,
it seems at least plausible that some version of a PRF-ODH assumption may work for a proof.

Readers may ask why we cannot simply retain the current structure of our proof and replace the Gap-DH
assumptions with a single PRF-ODH step. As discussed in Section 2] (and wholly unlike TLS), the Diffie-Hellman
values used in Signal can be long-term, medium-term or ephemeral. These keys are also used in different
combinations in key derivations. This difference requires that we not use a single PRF-ODH assumption, but
a range of PRF-ODH assumptions that are parameterized by how many times the challenger will generate
PRF(¢*"",) and PRF(¢""?, x) values upon being queried for a “left” or “right” PRE-ODH oracle (¢”',z) or
(g“/7 x) (where g“, and g“l are not one of the DH challenge values (g“, g”) given by the challenger). We give
a formal definition below from the work by Brendel et. al. [|18].

Definition 10 (Generic PRF-ODH assumption). Let G be a cyclic group of order ¢ with generator g. Let
PRF : G x {0,1}* — {0,1}* be a pseudo-random function that takes as key input an element k£ € G and an
arbitrary-length salt value = € {0,1}* as input, and outputs a value y € {0, 1}*.

We define a generalised security notion [r-PRF-ODH, which is parameterised by I, € {n,s, m}, indicating
how often the adversary is able to query a certain left oracle or right oracle (denoted ODH,, and ODH,
respectively) where n indicates that no query is allowed, s indicates that a single query is allowed, and m
indicates that arbitrarily-many queries are allowed to the respective oracle. Consider the Ir-PRF-ODH security
experiment depicted in Figure 20]

We say that the adversary A wins the [r-PRF-ODH game if ¥’ = b and define the following advantage
function: 1
AdvEREG o (A) = [PrBxpERE G g (A) = 1) = 5

To add to the difficulty, these left-and-right generic PRF-ODH assumption variants do not allow the adversary
to query both sides of the DH keyshares multiple times before the challenger generates the secret value, which
would be the case in the replacement of the long-term and medium-term secrets (refer to Case 1.1), which
means that we would need to further modify the generic PRF-ODH assumption to the needs of our particular
Signal Protocol proof. We call this a symmetric generic PRF-ODH problem, which we define below.

Definition 11 (Symmetric PRF-ODH assumption). Let G be a cyclic group of order ¢ with generator ¢g. Let
PRF : G x {0,1}* — {0,1}* be a pseudo-random function that takes as key input an element k£ € G and an
arbitrary-length salt value x € {0,1}* as input, and outputs a value y € {0, 1}

We define a symmetric security notion I7-sPRF-ODH, which is parameterised by I, € {n,s, m}, indicating
how often the adversary is able to query a certain left oracle or right oracle (denoted ODH,, and ODH,

38

_PRF-O . - -0 .
EngRPFRE},g?qH(A)' Ex lr-sPRF DH(A).

PRF,G,qg,q9
b & {0,1}, cu ¢ 0,0 < 0 b & {0,1}, e ¢ 0, ¢ < 0
2wl Zy X0 2w Zy X0
3: if [= m then 3: if (I =m) A (r = m) then
4: T — A(G7g7q’ gu)ODH“, 4 A(G’qu7 gu’gv ODH,, ,ODH,, ot
5: else 5. if (I =m) A (r # m) then
6 2"+ A(G,g,9,9") 6: A(G,g,q,9",9")"" — 2"
7. v & 2, 7: if (I #m) A (r = m) then
8: if {g“’,z*} € X then 8 AG,g,q,9",9")°" — 2
9: return L 9: else Y .
10: yo < PRF(g"",2"), 31 & {0,1}> 10: AG,g,9,9"9") >
1: X« XU{g",z"} 11: if (9",2") € X then
12: b <+ A(yp)°PHu-ODH 122 return L Y s N
13: return (b' = b) 13: yo <= PRF(¢"",2"), 51 < {0,1}
14: X+ XU{g",z"
15 b A(yy)O0Hu:0DH.
16: return (b’ =b)

ODH, (S, z,X, cy):

cif (I=n)Vv ({S", 2} € X)V (S ¢ G) then
return |

: if (I =s) A (cu > 0) then

return |

Doy e+ 1, X+ XU{SY, 2}

: return PRF(S%,z)

ODH, (S, z,X, ¢y):

cif (r=n)Vv ({SY,2} € X) V(S ¢ G) then
return L

: if (r =s) A (cy > 0) then

return |

Dy 4+ 1, X+ XU{SY 2}

6: return PRF(S",)

Figure 20: The security experiments for the generic PRF-ODH assumption, and the symmetric PRF-ODH assumption.
Note that both experiments make use of identical ODH,, and ODH,, oracles.

R

respectively) where n indicates that no query is allowed, s indicates that a single query is allowed, and m
indicates that polynomially-many queries are allowed to the respective oracle. Consider the security game
Expgﬁgﬁ(;'g?(? H(A) described in Figure 20| We say that the adversary A wins the Ir-sPRF-ODH game if b’ = b
and define the following advantage function:

1
Ir-sPRF-ODH Ir-sPRF-ODH
AdVPRF,G,A (A) = |Pr(EXpPRF,G,g,q (A)=1)- §|

However, Brendel et. al. [18] also show (via a algebraic reduction and meta-reduction argument) that the
existence of any efficient black-box reduction from the sn/ns-PRF-ODH problem to a decisional Diffie-Hellman-
augmented (DDHa) problem would imply that either the DDHa problem or the decisional-square Diffie-Hellman
problem is not hard. The DDHa assumption is a class of assumptions, roughly stating that the adversary cannot
efficiently win between either the decisional Diffie-Hellman problem or some other independent cryptographic
problem. This, the authors argue, shows that the existence of a standard-model instantiation of any generic
PRF-ODH problem (excepting nn-PRF-ODH) is impossible, assuming the aforementioned problems are indeed
hard. So constructing a standard model proof of the Signal Protocol using generic PRF-ODH based assumptions
could be moot.

There is however some advantage to this effort: it would bring clarity to which of the cases would be easier
for the adversary to break. In the work by Brendel et. al. the relations and separations between the variants of
Ir-PRF-ODH are shown, and thus the security of each of the cases is able to be compared concretely. In our
current proof, the adversary seemingly does not have an advantage targeting one particular case over another.
Now we have all the tools we would require to consider how the security proof in each case would work. We
consider each case below and explain which flavour of PRF-ODH is required and why.

Case 1.1 In Game 6 of Case 1.1 we know that the long-term identity key of party « and the medium-term key
of the peer v have not been compromised by the adversary, and thus we can replace the key shares ipk,,,
prepk, and the computed root key rk; and first-stage chain key cky’, with PRF-ODH challenge values.
Since both of these Diffie-Hellman key shares can be used in multiple sessions, and (potentially) may be
used before the Test session has initialised, we require many ODH,, and ODH,, queries at the start of the

39

experiment before the challenge salt value z is computed. Thus we require the mm-sPRF-ODH assumption,
the strongest variant of the PRF-ODH problem. In this case, we treat the keys ipk, and prepk, as the
keys to the PRF-ODH problem (which is now internal to the mm-sPRF-ODH game) and the following
(potentially revealed) secrets ipk, and ek, values as the salt value x that is queried to the mm-sPRF-ODH
challenger. The challenge value y;, output by the challenger is then used to replace the rk;, cky o values in
both the Tested session and its peer session that is used in computing the message key mkﬁfo which was
Tested by the adversary. In order to ensure that the message key mkéf0 is indistinguishable from random,
we need an additional PRF game to replace the computation of mké’:o from KDF,,, and use the output
from the PRF challenger to replace mkgr_o. Thus an adversary capable of distinguishing these changes would
also be capable of breaking the PRF security of KDF,,, or the mm-sPRF-ODH security of HKDF, G.

Case 1.2 In Game 6 of Case 1.2 we know that the predicate cleang (u,i,[0]) is upheld, which means that
the ephemeral key of the initiator and the identity-key of the responder have not been compromised by
the adversary, and thus we can replace the key shares epk,,, ipk,, and the computed root key rk; and
first-stage chain key ck”O with PRF-ODH challenge values. Since only the identity-key of the responder
can be used in multiple sessions, and (potentially) may be used before the Test session has initialised, we
require many ODH,, queries at the start of the experiment before the challenge salt value = is computed.
Thus we require the mn-PRF-ODH assumption, a non-symmetric variant of the PRF-ODH problem. In
this case, we treat the values ipk,, ek, as the keys to the PRF-ODH problem (which is now internal to the
mn-PRF-ODH game) and the following (potentially revealed) secrets prepk,,, ik, as the salt value z that
is queried to the mn-PRF-ODH challenger. The challenge value y; output by the challenger is then used
to replace the rky, ckyy values in both the Tested session and it’s peer session that is used in computing
the message key mké’:o which was Tested by the adversary. In order to ensure that the message key mkffo
is indistinguishable from random, we need an additional PRF game to replace the computation of mké’;o
from KDF,,, and use the output from the PRF challenger to replace mkf{o. Thus an adversary capable
of distinguishing these changes would also be capable of breaking the PRF security of KDF,,, or the
mn-PRF-ODH security of HKDF, G.

Case 1.3 In Game 6 of Case 1.3 we know that the predicate cleangy(u, 4, [0]) is upheld, which means that the
ephemeral key of the initiator and the medium-term key of the responder have not been compromised by
the adversary, and thus we can replace the keyshares epk,,, prepk, and the computed root key rk; and
first-stage chain key ck”o with PRF-ODH challenge values. Since only the signed-prekey of the responder
can be used in multiple sessions, and (potentially) may be used before the Test session has initialised, we
require many ODH,, queries at the start of the experiment before the challenge salt value z is computed.
Thus we require the mn-PRF-ODH assumption, a non-symmetric variant of the PRF-ODH problem. In
this case, we treat the values prepk,, ek, as the key to the PRF-ODH problem (which is now internal
to the mn-PRF-ODH game) and the following (potentially revealed) secrets ipk,, ik, values as the salt
value x that is queried to the mn-PRF-ODH challenger. The challenge value ¥, output by the challenger
is then used to replace the rk;, cky' values in both the Tested session and it’s peer session that is used in
computing the message key mkéfo which was Tested by the adversary. In order to ensure that the message
key mk(‘) o0 Is indistinguishable from random, we need an additional PRF game to replace the computation
of mk{, from KDF,,, and use the output from the PRF challenger to replace mkf{o Thus an adversary
capable of distinguishing these changes would also be capable of breaking the PRF security of KDF,,, or
the mn-PRF-ODH security of HKDF, G.

Case 2.1 This is treated identically to Case 1.1, with the same bounds and game hops.

Case 2.2 This is treated identically to Case 1.2, with the same bounds and game hops.

Case 2.3 This is treated identically to Case 1.3, with the same bounds and game hops.

Case 2.4 In Game 6 of Case 2.4 we know that the predicate cleangg(u, 4, [0]) is upheld, which means that the
ephemeral key of the initiator and the ephemeral key of the responder have not been compromised by the
adversary, and thus we can replace the key shares epk,,, epk, and the computed root key rk; and first-stage
chain key cky, with PRF-ODH challenge values. Since both keys are ephemerally generated and only
used a single time, we require the sn-PRF-ODH assumption, the weakest non-standard model variant of
the PRF-ODH problem. In this case, we treat the epk,, ek, as the key to the PRF-ODH problem (which
is now internal to the sn-PRF-ODH game) and the following (potentially revealed) secrets prepk,, ik,
and ik, values as the salt value x that is queried to the sn-PRF-ODH challenger. The challenge value y;
output by the challenger is then used to replace the rk,, ckj, values in both the Tested session and it’s
peer session that is used in computing the message key mkf{o which was Tested by the adversary. In order
to ensure that the message key m f)’:o is indistinguishable from random, we need an additional PRF game
to replace the computation of mk?f0 from KDF,,, and use the output from the PRF challenger to replace
mkf{o. Thus an adversary capable of distinguishing these changes would also be capable of breaking the
PRF security of KDF,,, or the sn-PRF-ODH security of HKDF, G.

Case 3.1 In Game 6 of Case 3.1 we know that the predicate cleangg(u, 4, [asym-ri:1]) is upheld, which means

40

that the ratchet key of the initiator and the ratchet key of the responder have not been compromised by the
adversary, and thus we can replace the key shares rchpku, rchpkg and the computed temporary value z
and asymmetric-stage chain key ckg', with PRF-ODH challenge values. Since both keys are ephemerally
generated and only used a single time, we require the sn-PRF-ODH assumption, the weakest non-standard
model variant of the PRF-ODH problem. In this case, we treat the values rchpkg, rchkg as the key to the
PRF-ODH problem (which is now internal to the sn-PRF-ODH game) and the (potentially revealed) root
key rk, of the first stage as the salt value x that is queried to the sn-PRF-ODH challenger. The challenge
value y, output by the challenger is then used to replace the z, cky', values in both the Tested session
and it’s peer session that is used in computing the message key mkgfo which was Tested by the adversary.
In order to ensure that the message key m gio is indistinguishable from random, we need an additional
PRF game to replace the computation of mkg'y from KDF,,, and use the output from the PRF challenger
to replace mkaO. Thus an adversary capable of distinguishing these changes would also be capable of
breaking the PRF security of KDF,,, or the sn-PRF-ODH security of HKDF, G.

Case 3.2 In Game 6 of Case 3.2 we know that the predicate clean i ,(0)(¢ 7, [0]) is upheld, which means
that initial key-exchange stage has some Diffie-Hellman key share pair that has not been corrupted, and
that the adversary has not revealed the state linking the initial key-exchange to this stage. Depending on
which clean predicate that was upheld in the first stage, the replacement of Diffie-Hellman values is done
as in Case 1.1, Case 1.2, Case 1.3 or Case 2.4. We know from these case analysis that the root key rk; is
indistinguishable from random, and thus we are able to replace this value with a random value rk;, and
note that an adversary capable of distinguishing this change can break the security of Case 1.1, Case 1.2,
Case 1.3 or Case 2.4. We then use PRF game hops in a standard way to replace the derivation of the z,
ck{fO values in both the Tested session and it’s peer session that is used in computing the message key

mkg'y which was Tested by the adversary. In order to ensure that the message key mko o 18 indistinguishable
from random, we need an additional PRF game to replace the computation of mk', from KDF,,, and use

the output from the PRF challenger to replace mk; 10 Thus an adversary capable of distinguishing these
changes would also be capable of breaking the PRF security of KDF,,, or the mm-sPRF-ODH security
of HKDF, G (as in Case 1.1), or the mn-PRF-ODH security of HKDF, G (as in Cases 1.2 and 1.3), or
the sn-PRF—ODH security of HKDF, G (as in Case 2.4).

Case 4.1.1 In Game 6 of Case 4.1.1 we know that the predicate cleanagynri(u, %, [asym-ri:z — 1]) is upheld,
which means that either:

« the previous stage’s ratchet keys have not been compromised by the adversary (in which case analysis
follows from Case 3.1)

« the previous stage’s state has not been compromised by the adversary (in which case analysis follows
from Case 3.2)

In a similar way, then, we follow those cases to replace the appropriate uncompromised Diffie-Hellman key

shares with challenge values from a PRFODH game. Thus an adversary capable of distinguishing these

changes would also be capable of breaking the PRF security of KDF,,,, or the mm-sPRF-ODH security

of HKDF, G (as in Case 1.1), or the mn-PRF-ODH security of HKDF, G (as in Cases 1.2 and 1.3), or

finally the sn-PRF-ODH security of HKDF, G (as in Cases 2.4 and 3.1).

Case 4.1.2 In Game 6 of Case 4.1.2 we know that the predicate cleangg(u,i,2 — 1,2 — 1) is upheld, which
means that the previous stages ratchet keys have not been compromised by the adversary and analysis
follows from Case 3.1, with the same bounds and game-hops. In particular, this means that the adversary’s
advantage in breaking the key-indistinguishability of the Tested session key is bound by the PRF security
of KDF,. and KDF,,, or the sn-PRF-ODH security of HKDF, G.

Case 4.2.1 In Game 6 of Case 4.1.1 we know that the predicate cleanagyn ri(u, i, [asym-ir:z — 1]) is upheld.
Note that similarly to the proof of Case 4.2.1, this follows identically to Case 4.1.1 with an additionally
application of a PRF game to account for the intermediate computation of a tmp value.

Case 4.2.2 In Game 6 of Case 4.2.2 we know that the predicate cleangg(u, i, 2—1,2—1) is upheld, which means
that the previous stages ratchet keys have not been compromised by the adversary and analysis follows
identically to Case 4.1.2, with an additional PRF game to account for the intermediate computation of a
tmp value. In particular, this means that the adversary’s advantage in breaking the key-indistinguishability
of the Tested session key is bound by the PRF security of KDF,. and KDF,,, or the sn-PRF-ODH security
of HKDF, G.

Case 5 In this Case, and all subcases, analysis follows from Case 4, with additional PRF game hops to
inductively replace chaining keys that (via the cleanness predicate cleangy, have not been compromised by
the adversary, and thus follows from the security of the appropriate asymmetric stage.

From this vantage point, we can now compare the cases concretely. For instance, it is clear that the
adversary’s advantage of breaking Case 1.1 (where the long-term identity key of the initiator and the medium-
term signed prekey of the responder have not been compromised by the adversary) is quantitatively higher than
the adversary’s advantage in breaking Case 2.4 (where the ephemeral key of the initiator and the one-time
prekey of the responder have not been trivially compromised by the adversary). This is due to the fact that Case

41

1.1 (and identically, Case 2.1) require the strong symmetric variant of PRFODH (i.e. mm-PRF-ODH) whereas
Case 2.4 (and similarly, Case 3.1) require the weak non-symmetric varient of PRFODH (i.e. sn-PRF-ODH).
Cases 1.2, 1.3, 2.2 and 2.3 sit between these two, requiring multiple queries an ODH,, oracle, but no queries to
the ODH,, oracle, as it simulates a long-term Diffie-Hellman key and a single-use ephemeral Diffie-Hellman
key using a mn-PRF-ODH challenger.

In addition, this supplemental proof also allows us to consider any future work that examines the computational
hardness of the generic and symmetric PRF-ODH assumptions in relation to the security of the Signal protocol.

42

Appendix D.
Version History

V1.0 (2016-10-27) Original release.
V1.1 (2016-10-31) Minor updates.
o Clarified description of UKS attack in related work.
« Remarked that in the implementation, one-time keys can be updated after registration.
o Added reference to XEddsa signature specification and full/peer deniability.
« Removed references to header encryption and online key exchange, which are not part of Signal proper.
V2.0 (2017-10-09) Major updates.
« Added simplified protocol flow diagram to aid intuition.
o Clarified and further explained the freshness predicates.
o Clarified and further explained how our model relates to key indistinguishability and ACCE-like
definitions.
Made substantial clarifications and expansions to the proof.
Added illustrative figures to the proof.
Wrote Section [C] on the use of the PRF-ODH assumption to replace GapDH + ROM.

43

	Introduction
	Contributions
	Additional Related Work

	The Core Signal Protocol
	Protocol Overview
	Notation and Primitives
	Registration Phase—
	Session Setup Phase—
	Receiving ephemerals
	Building a session

	Symmetric-Ratchet Phase—
	Asymmetric-Ratchet Phase—
	Memory Contents

	Threat Models
	Security Model
	Multi-Stage Key Exchange Protocol
	Key Indistinguishability Experiment
	Session identifiers

	Freshness
	Session Setup Stage [0]
	Asymmetric Stages
	Symmetric Stages

	Security Analysis
	Limitations
	Conclusions and Future Work
	Appendix A: On Hardness Assumptions and the Random Oracle Model (ROM)
	Appendix B: Security Proof
	Protocol Modifications for Key Indistinguishability
	Proof Structure Overview
	Proof of the Main Theorem

	Appendix C: Achieving a Standard Model proof of the Signal Protocol
	Appendix D: Version History

